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Quantile regression

e Regression or regression model usually refers
to modelling the conditional expectation of Y
given X

E(Y|X = x).

e Regression model typically measures the rela-
tionship between Y and X,

e It could be used to identify the dependency or
effect,

e it can also be used for prediction.



Quantile regression

e QR modelis to modelling the conditional quan-
tile of Y given X

QT(Y|CU)7
where 0 < 7 < 1 stands for the 7th quantile of
Y.

e For example, median regression with - = 0.5.

e If the conditional distribution of Y given X is
symmetric, then the median regression is iden-
tical to the mean regression, otherwise, they
are different.



1
e In general, E(y|x) :/o Qr(Y|x)dr

—— mean regression model can be viewed as a
summary of all the quantile effects.

—> QR gives a deep analysis of the way that
Y and X are related.



An example of a simple linear quantile regression:
when (X,Y) ~ bivariate normal distribution N(0,0,r,1,1),

Q-(z) =rx+ (1 —r2)d 1(7);

where ®~1(7) denotes the inverse of standard nor-
mal distribution.

Due to the symmetry of the conditional distribu-
tion, all quantile curves ¢g1(x), qos5(x) and gg g(x)
from N(0,0,0.75,1,1) are parallel.



(X, Y)~N(0, 0, 0.75, 1, 1) y




Otherwise, as see from the 4011 US girl weights
against ages:
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Applications of quantile regression include

e risk measurement:

e the commonly used risk measurers in finance
iIs called VaR (value at risk), which actually
corresponding a tail value of an asset price.

e People are more concerned the upper pollution
level than an average one.



Applications of quantile regression include

e ahnalysis of fat-tailed distribution:

e does cheaper food contribute to children obe-
sity?

e does a specific diet make difference on chil-
dren’s weights?



T he probability of ¥ exceeding a threshold Q:

given @, find : = Pr[Y < Q|X].

forecast of the time-varying probability of a
financial return exceeding a given threshold;

In wind-farm to predict/check if the wind speed
exceeds a certain level,

flooding prediction and energy demand predic-
tion.
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Basic fitting method of QR

e Mean regression satisfies

o E(Y|X = z) = argmin E[(Y — a)?|X].

e an QR ¢, (x) satisfies

o 7= PrlY <qr(x)|X = z].



where the ‘Check function’

TU, u >0

e pr(u)=[r—I(u<0)]u= { —(1—7u, u<O.

e Given the data {Y;, X;}"' ; to fit a linear QR
model ¥ = x 3 + ¢ then

o B(1) = argminy 37 pr(Y; — Xb).



‘Working’ likelihood function for QR

e Mean regression corresponds to /oss function
L(u) = u? and normal likelihood with pdf

frn(u) = A exp(-144).

e QR corresponds to check function
opr(u) and the asymmetric Laplace likelihood

(ALD) with pdf

farp(u) =

e As minimizing the ‘check function’ <— maxi-
Mmizing an ALD-based likelihood function.



Bayesian Quantile Regression (BQR)

e Regarding the regression parameters 3 from a
linear QR model Q,(Y|x) = x/3 as a random
variable, aiming at its posterior distribution ac-
cording to Bayes Theorem:

Pr(B|.) = Pr(B) x Pr(.|3).

e Bayesian inference depends on prior and likeli-
hood function.

e All selected likelihoods may not be true but
some are working.



e ALD has good performance on data generated
from many error distributions (Ji et al. 2012;
Li et al. 2010; among others) and theoretic
justification:

e Komunjer (2005) Quasi-Maximum Likelihood
Estimation for Conditional Quantiles, J. Econo-
metrics.

Sriram, Ramamoorthi and Ghosh (2013). Pos-
terior consistency of Bayesian quantile Regres-
sion under a mis-specified likelihood based on
asymmetric Laplace density, Bayesian Analysis.



BQR

e Yu and Moyeed(2001) used Metropolis Hast-
ings (M-H) on joint distribution Pr(3|...).

e R packages:

http://cran.r-project.org/web/packages/bayesQR/bayesQR.
pdf

http://hosho.ees.hokudai.ac. jp/~kubo/Rdoc/library/
MCMCpack/html/MCMCquantreg.html



Gibbs sampling for BQR

e T he advantage of Gibbs sampler over Metropo-
lis Hastings (MH) algorithm:

e Gibbs sampling doesn’t have the convergence
iIssue as MH algorithm has, and unlike M-H al-
gorithm which has proposal distribution selec-
tion, the proposal distribution of Gibbs sam-
pling is simply taken to be the conditional dis-
tributions of the target distribution.

e Each density to be sampling is of low dimension
(often one dimensional) and thus it is very easy
and efficient to sample from it.



Gibbs sampling for BQR

e ALD as a Mixture of Normals

frzipmo) = 1T exp{—m (Z_“)}

o o

/OO 1 exp { 1
0 2\/mTow 4ow

y 7(1—17) exp {_7‘(1 — T)w} g

o) o)

{z—n— (1 -20w)?}

e This extends the results (Laplace distribution
with - = 0.5 here) of West (1987) and Andrews
and Mallows (1974) to the ALD.



Gibbs sampling for BQR

e T hat is,
e = puv—+90v/ovu,
— 1-27 2 2
where p = (1) and /< = G

e v and u are independent and follow standard
exponential distribution and normal distribution
respectively:

e v~ Fxp(l/o) and u ~ N(O,1).



e Therefore the conditional distribution f(y|3, 0, v)
under y = 3’ X + ¢ consists of independent nor-
mal distribution N(3'X; 4+ uoz, 6%02z).

e Once the normal-Gamma conjugate prior of a
normal distribution is provided for (3,0), we can
construct a Gibbs sampler for inference of the
posterior conditional densities of all quantities.

e To this end we assume that the prior 38 ~ N(8g, Bo)
and o ~ IG(ng/2, so/2), an inverse Gamma dis-
tribution /G(a,b) with parameters a = ng/2 and
b= sg/2.



e Then the posterior of 3 still follows normal dis-
tribution

Bly,v,o0 ~ N(B,, Bp)
with B;! = >y (X,;X}/6%0v;) + Byt and B, =
Bp(X1 1 (X;(Y; — pv;) /6%0v;) + B, 1 Bo).

e T he posterior distribution for v; follows a gen-
eralized inverse Gaussian distribution

1
vi|y7 /67 g ~ GIG(§7 Qg /77,)7

with Ozz-2 = (Y; - B3 X;)?/6%c and 77;2 = 2/0 4+ u?/5%0.



e T he posterior distribution for o follows an in-
verse Gamma distribution

n* s*

275)7
with n* = ng + 3n and s* = sg + 2> ;v; +

S (Y= B X — pv)? /6%,

oly,B,v ~ IG(

e A Gibbs sampler successively sampling from

o|lB,v,y

v|B,0,y

Blo,v,y
converges to p(3,0,v|y).



R packages:
R-Package lgqmm (cran.r-project.org/package=1lqmm)
for panel (longitudinal) data.

R-package ’bayesQR’
cran.r-project.org/web/packages/bayesQR/bayesQR.pdf.

R-package Package ’Brq’
cran.r-project.org/web/packages/Brq/Brq.pdf

for BQR with cross-section data.

R-package BSquare is also for BQR with panel data.



Mathematics Justification of ALD-likelihood

e Komunjer (2005): Quasi-Maximum Likelihood
Estimation for Conditional Quantiles,” Journal
of Econometrics, 128, 137—164.

e Komunjer (2005): likelihood should belong a
tick-exponential family of densities — family whose
role in QR is analog to the role of the linear-
exponential family in mean regression estima-
tion.

e T he '’ well-known member of the tick-exponential
family is the asymmetric Laplace density...”



How accurate of Gibbs sampler with
ALD-likelihood?

Consider fitting a QR model y = Q- (y|x) + € with
BQR and eight different model errors.

The 8 error distributions chosen to represent a
wide variety of characteristics that a true error
distribution may possess.



Gaussian (Gau): N(0,12),

Skewed (Skew): tN(22,12) 4+ ¢ N(—155,3%) + 2N (555, 29),

Kurtotic (Kur): £N(0,12) + iN(0,52),

Outlier (Outl): £N(0,12) + 2N(0, 52),

Bimodal (Bim): 1N(-1,22) 4 IN(1,2)2),

Bimodal, separate modes (Sepa): 1N( 2,2 %)+ N(§,§2),

Skewed bimodal (Skeb): 3N(—-£ 12) 4 1N ({o¢, 32),

Trimodal (Tri): N(-2,22) + 2N (g,2%) + 5N(0, 7
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Error distributions. Reading from left to right, top to bottom, the den-
sities are Gaussian (Gau), Skew (Skew), Kurtotic (Kur), Outlier (Outl),
Bimodal (Bim), Bimodal, separate modes (Sepa), Skew Bimodal (Skeb)

and Trimodal (Tri).



Generate y;, : = 1,...,50 from the model y, =
Bo + Bix1; + Boxo; + B3x3; + €;-

For this model, the conditional quantiles are
given by

Qr(y;|lz;) = ao(1) + Bra1; + Boxo; + Baxs;,

where og(7) = Bo + F~1(r). We set 5y = 0,
B1 = B> = B3 = 1 and generated 100 replications
from each of the 8 models, giving a total of 800
datasets.



Under improper prior for regression parameter, we
ran the Gibbs sampler for 11,000 iterations with
1,000 of those discarded as burn in.

For each of the 100 simulated datasets correspond-
iIng to a particular error distribution, we recorded
the posterior means.

Table 1 presents the average of the posterior means
together with the standard error in parentheses.
We analysed both = 0.5 and - = 0.1.



ap(T) b1 B2 B3

T=20.1

Gau -1.540 (0.202) 1.001 (0.178) 0.964 (0.166) 1.015 (0.202)
Skew -1.782 (0.289) 0.991 (0.227) 1.009 (0.259) 0.974 (0.261)
Kur  -1.339 (0.205) 0.991 (0.170) 1.013 (0.164) 0.995 (0.160)
Outl -0.770 (0.114) 1.001 (0.071) 0.993 (0.074) 1.009 (0.076)
Bim -1.819 (0.170) 0.975 (0.200) 1.017 (0.197) 1.015 (0.187)
Sepa -2.172 (0.164) 1.000 (0.203) 0.982 (0.176) 1.018 (0.197)
Skeb  -1.820 (0.228) 1.015 (0.233) 1.014 (0.194) 0.997 (0.216)

Tri  -1.861 (0.192) 0.986 (0.210) 1.006 (0.196) 0.999 (0.203)
T=0.5

Gau  0.010 (0.176) 0.970 (0.164) 1.009 (0.168) 0.987 (0.141)
Skew -0.054 (0.142) 0.996 (0.150) 1.006 (0.166) 1.001 (0.137)
Kur -0.003 (0.082) 1.011 (0.080) 0.996 (0.101) 0.984 (0.101)
Outl -0.003 (0.022) 0.999 (0.028) 0.995 (0.030) 0.996 (0.0206)
Bim  -0.004 (0.241) 1.026 (0.212) 1.020 (0.223) 0.974 (0.249)
Sepa 0.093 (0.415) 1.039 (0.350) 1.050 (0.369) 0.978 (0.344)
Skeb 0.010 (0.196) 1.031 (0.201 1.001 (0.199 0.999 (0.201)

Tri 0.015 (0.247) 0.983 (0.203) 0.971 (0.268) 1.001 (0.272)

Summary statistics based on calculating the posterior mean of the 100

datasets for each of the 8 diffrerent error distributions. The true values
of ag(7) for - = 0.5 are 0 and for - = 0.1 are -1.282(Gau), -1.502(Skew),

-1.036(Kur),

-0.154(Outl),

and -1.659(Tri).

-1.561(Bim),

-1.921(Sepa),

-1.541(Skeb)



Bayesian inference quantile curves using natural
cubic splines

The response variable y of the motorcycle data is a
record of the head acceleration, measured in mul-
tiples of the acceleration due to gravity g. The ex-
planatory variable x is the times, measured in mil-
liseconds, after a simulated motorcycle accident.



Thompson et al. (2010) ran the MH algorithm
for 250,000 iterations discarding 50,000 as burn
in and retaining every 10th iteration to reduce
autocorrelation and for storage purposes. We
plot the NCS obtained by the MH algorithm and
that obtained by the Gibbs sampler using 11,000
iterations, 1,000 of which were discarded as burn
in. We analysed = 0.95.
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Bayesian inference (both the MH algorithm and the Gibbs
sampler) produce curves that can accurately reconstruct the
true underlying curve and are very similar to each other.



ALD-likelihood extension
e It can provide many extensions of BQR.
e For example:

e Bayesain spatial QR (Lum and Gelfand, 2012)
in location s with spatial model error:

o op(s) = 201205 Z(s8) + (7 2Be(s)

e and Z(s) ~ GP(0, r(s,s’;6));




Summary

e Bayesian Quantile regression is a sensible al-
ternative to classical Quantile regression when
making inference on underlying quantile regres-
sion functions.

e T here are both mathematica and numerical jus-
tifications behind.

e Both M-H algorithm and Gibbs sampling are
applicable.



The mixture of normals representation of the
ALD allows efficient Gibbs sampling.

A few R packages provide user-friendly soft-
wares.o.

Future work: expert judgement for BQR via
prior.

Thank you



