

Calibration and Combination of Expert's Dependence Estimates

Oswaldo Morales Napoles¹ Daniël Worm¹ Anca M. Hanea² Ivo Kalkman¹

- 1. TNO Oswaldo.MoralesNapoles@tno.nl
- 2. TU Delft

Outline

- Motivation
 - > Previous Work
- > The exercises
- Results
- Conclusions

Controlled Flight into Terrain Missed approach execution (7) **r**_{7.6} **r**7,3|6,5,4 **r**7,5|6 **r**7,1|6,5,4,3,2 7 (conditional) rank correlations Separation in air **Crew Alertness** > (6) (3) **r**7,4|6,5 **r**_{7,2|6,5,4,3} Conditional probabilities of exceedence > Mean cross wind Fuel Weight (1) (5) Speed deviation Visibility (2) at 500 ft (4) ssed Approach P(7>med| 6>med) ... Crew Alertness Separatoin in Air P(7>med| 1>med, 2>med, 3>med, 0,11 0.2 -0.11 0 12 4>med, 5>med, 6>med) 5.83±2.75 Fuel Weight Mean cross wind > r(7,6) > r(7,5)/r(7,6) ... 3,15e+3±1,23e+3 6 47+4 64 Speed Deviation 500ft Visibility > r(7,1)/r(7,6) 2.72±3.09 1,67e+4±9,64e+3

Flight, Maintenance & ATC Crew Error

- > MN I
 - > 1 expert
 - > 6 (conditional) rank correlations
 - Ratios of rank correlations

- > 14 (conditional) rank correlations
- > Conditional probabilities of exceedence
- > ATC
 - > 5 experts
 - > 6 (conditional) rank correlations
 - > Ratios of rank correlations

Earth Dams in Mexico

- > 4 experts
- > 16 (conditional) rank correlations
- > Ratios of rank correlations

Question

> Which method would render more accurate answers?

- > Can experts provide meaningful estimates?
- TNO Project GAMES2R: GrAphical ModEls for Systems Risk and Reliability

Parenthesis: Cooke's classical model

- Seed variables
 - Analyst knows the answer post hoc
- > Calibration:
 - Accuracy in a statistical sense
- > Information:
 - How uncertain are well calibrated experts?
- Weight experts based on their performance

innovation

Exercise 1: The Models

- > SO_2 emissions and $PM_{2.5}$ concentrations
- > 7 (conditional) rank correlations

- > Air pollution in the US
- Sometimes used in epidemiology
- Workshop December 2012
- Preliminary results presented in August 2013 in Strathclyde University

The Models

- > SO₂ emissions and PM_{2.5} concentrations
- > 7 (conditional) rank correlations
- > MODEL 1 \rightarrow Original Data
- MODEL 2 → Fictitious Data

TNO innovation for life

The Models

> 14 experts

- > 9 grad. students (TU Delft)
- > 5 researchers (TU Delft & TNO)
- > 500k samples / model sent 1 week before
- Background information
 - > data
 - > type of questions
- > Half day workshop (TU Delft) :
- > Two groups of 7 experts each
 - M1CPE & M2RRC
 - M1RRC & M2CPE

- 1. Consider model *i*. There are $N_{1,i}$ samples (out of 500,000) for which variable SO2_a3 is at least 10,466 (median). Consider the indices of all variables corresponding to this subset. In other words, conditionalize on this subset. In how many of these indices will the value of PM2.5_Alabama be at least 14.82 (median)?
- 5. Consider model *i*. There are $N_{5,i}$ samples (out of 500,000) for which variable SO2_a3 is at least 10,466 (median), SO2_a5 is at least 7,256 (median), SO2_b1 is at least 26,091 (median), SO2_a8 (median) is at least 3,429 (median) and SO2_a6 is at least 21,908 (median). Consider the indices of all variables corresponding to this subset. In other words, conditionalize on this subset. In how many of these indices will the value of PM2.5_Alabama be at least 14.82 (median)?
 - 6. Consider model i. What is the rank correlation between SO2_a3 and PM2.5_Alabama?
- 10. Consider model *i*. What is the ratio of the rank correlation between SO2_a6 and PM2.5_Alabama to the rank correlation between SO2_a3 and PM2.5_Alabama?

Results (Individual estimates)

$$|r_{i,j|D} - r^e_{i,j|D}|$$

$$\bar{\delta}_{M1RRC} = 0.23$$
$$\bar{\delta}_{M1CPE} = 0.43$$
$$\bar{\delta}_{M2RRC} = 0.46$$
$$\bar{\delta}_{M2CPE} = 0.49$$

TNO innovation for life

Results (Individual estimates) ANOVA

$$H_0 : \overline{\delta}_{M1CPE} = \overline{\delta}_{M2RRC} = \overline{\delta}_{M2CPE} = \overline{\delta}_{M1RRC}$$

- Total Sum of Squares
 - > Between Groups (Treatments)
 - > Within Group (Error)
 - P-val (F statistic is actually larger) =
 0.0016 → reject H₀
 - > Which means are different?

Total
$$SS = SST + SSE$$

$$\frac{SST/(k-1)}{SSE/(n_1+...+n_k-k)} \sim F$$

'Source'	'SS'	'df'	'MS'	'F'	'Prob>F'
'Columns'	1,98	3	0,6612	5,291	0,0016
'Error'	23,99	192	0,1250	0	0
'Total'	25,98	195	[]	[]	0

TNO innovation for life

Results (Individual estimates) Tukey's allowances $H_0: \ \delta_i - \delta_j$ $(\overline{\delta}_i - \overline{\delta}_j) - q_{\alpha,k,(n-1)k} \sqrt{\frac{SSE/(n_1 + \dots + n_k - k)}{n}} \le \delta_i - \delta_j \le (\overline{\delta}_i - \overline{\delta}_j) + q_{\alpha,k,(n-1)k} \sqrt{\frac{SSE/(n_1 + \dots + n_k - k)}{n}}$

Randomized design (ANOVA)

$$\bar{\delta}_{M1RRC} \neq \bar{\delta}_{M1CPE}
\bar{\delta}_{M1RRC} \neq \bar{\delta}_{M2RRC}
\bar{\delta}_{M1RRC} \neq \bar{\delta}_{M2CPE}$$

- The probability that all ^k₂ pairs δ_i δ_j simultaneously satisfy the inequalities above is 1 α.
- *q*_{α,k,v} is the upper α critical value of the
 Studentized range distribution

1	2	-0,38	-0,20	-0,01
1	3	-0,41	-0,23	-0,04
1	4	-0,44	-0,26	-0,07
2	3	-0,21	-0,03	0,15
2	4	-0,24	-0,06	0,12
3	4	-0,22	-0,03	0,15

Results (Individual Models)

- > H_0 : $BN_e = BN_{true}$
- > Sample from BN_{true}
- Empirical distribution of det(R_{true})
- Accept if det(R_e) is within 5th and 95th percentiles distribution of det(R_{true})
- > det(Σ) is a measure of dependence
- Motivated from data driven applications.
 However...
 - VERY different correlation matrices might lead to the same determinant
 - > Proof in our paper ESREL 2013

1	0,907981	0,517638		1	0,907981	0,517638
0,907981	1	0,795522		0,907981	1	0,144489
0,517638	0,795522	1		0,517638	0,144489	1
			0,022565			
1	-0,90798	-0,90798		1	0	0
-0,90798	1	0,733548		0	1	-0,98865
-0,90798	0,733548	1		0	-0,98865	1

innovation

Instead \rightarrow measure of distance

> Heillinger distance

$$dCal(e) = 1 - d_H(N_{true}, N_e)$$

$$d_H(N_{true}, N_e) = \sqrt{1 - \eta(N_{true}, N_e)}$$

$$\eta(N_{true}, N_e) = \frac{\det(\sum_{true})^{\frac{1}{4}} \det(\sum_e)^{\frac{1}{4}}}{\det(\frac{1}{2}\sum_{true} + \frac{1}{2}\sum_e)^{\frac{1}{2}}}$$

d-Cal Properties

- > d_H is a metric:
 - > d_H is symmetric
 - d_H satisfies the triangle inequality

$$dCal(e) = 1$$
 iff $\sum_{e} = \sum_{true}$

- \rightarrow dCal(e) = 0 if
 - > $\sum_{true} = I$ and $\sum_{e} = perfect dep.$ linear combination of RV or
 - > Viceversa

 Capture magnitude right but direction wrong.

innovation

- > $dCal(e) \rightarrow 0$ if
 - > \sum_{e} \rightarrow 2I \sum_{true} while
 - ▶ det(Σ_e)→0 and det(Σ_{true}) →0
 - > $_{ij}(\sum_{ture}) ≈ _{ij}(\sum_{e})$
 - > Proof: paper in preparation
- Capture magnitude and direction "close enough"
- > dCal(e) \rightarrow 1 if
 - ▶ $_{ij}(\sum_{ture}) \approx _{ij}(\sum_{e})$
 - > Entry-wise equal
 - > Proof: paper in preparation

Results Exercise 1

- > Group 1
 - > B is best with both methods
- > Group 2
 - > G, D, M: d-Cal >0,7
 - > D high both methods
- > Performance based combination best \rightarrow Analogy with Cooke's method

	Group 1					Group 2						
Id.	Calibr.	Inform.	d-Cal M1CPE	d-Cal. M2RRC	Id.	Calibr.	Inform.	d-Cal M1RRC	d-Cal. M2CPE			
Α	0.0139	2.092	0.46	0.13	D	0.0357	2.745	0.71	0.60			
В	0.0013	1.662	0.65	0.52	Ε	0.0063	1.497	0.51	0.32			
C	l.o.	1.89	0.32	0.10	F	0.7069	0.7571	0.12	0.09			
Η	l.o.	2.336	0.28	0.32	G	l.o.	1.86	0.87	0.49			
Ι	l.o.	1.474	0.64	0.18	J	l.o.	2.49	0.32	0.17			
Κ	0.0011	1.209	0.62	0.17	\mathbf{L}	0.0028	1.169	0.09	0.16			
Ν	l.o.	2.378	0.62	0.31	Μ	0.00131	3.84	0.75	0.32			
Eq.	0.2282	0.0263	0.74	0.37	Eq.	0.5503	0.3009	0.66	0.37			
Gl.	0.8283	1.459	0.76	0.52	Gl.	0.7069	0.7571	0.95	0.60			

innovation for life

Table 1 Calibration, Information and d-Calibration scores for air pollution NPBN experts.

Illustration dCal scores

- > G, M1RRRC → 0.87
- > GI., M1RRC \rightarrow 0.95
- > D, M2CPE \rightarrow 0.60 = GI M2CPE

TNO innovation for life

Exercise 2

- > Wind pressure coefficients measured in wind tunnel
- > Use CFD models
- > Pressure compromises structural integrity of building elements
- > Interest in net forces over facade panels
- Correlation between pressures external & internal to the wooden model → net forces

Exercise 2

- > Workshop October 2013
- > 9 TNO experts
- > 3 models

- Low calibration scores
- Low d-calibration scores
 - Negative correlations between A & B
 - > Not the case (Capture magnitude right but direction wrong)
 - > Big improvement when looking at separate sides
- Performance based combination best → Analogy with Cooke's 15 method

1• 7• 10• 15•	A	15 B	
-	16	22	27

innovation

Group 1					Group 2						
Id. Calibr.	Inform.	d-Cal	d-Cal.	d-Cal.	Id.	Calibr.	Inform.	d-Cal	d-Cal.	d-Cal.	
		M3CPE	M3CPEB	M3CPEA		Canor.		M3RRC	M3RRCB	M3RRCA	
Α	l.o.	0.7587	0.24	0.58	0.45	D	l.o.	1.637	0.26	0.47	0.58
В	0.0026	0.8698	0.20	0.48	0.38	Ε	l.o.	1.444	0.18	0.66	0.45
C	0.015	0.5493	0.19	0.69	0.41	F	l.o.	0.5965	0.36	0.45	0.82
Η	0.138	0.3332	0.17	0.49	0.50	Ι	l.o.	0.9946	0.31	0.44	0.65
G	l.o.	0.8242	0.09	0.95	0.28						
Eq.	0.265	0.242	0.33	0.67	0.61	Eq.	0.005	0.1989	0.35	0.50	0.82
Gl.	0.265	0.242	0.35	0.95	0.69	Gl.	0.0126	0.2947	0.36	0.66	0.82

Table 3 Calibration, Information and d-Calibration scores for Closed Cube 15^o NPBN experts.

sides).

sides).

Final comments

- > Other two models behave similarly
- Can experts provide meaningful estimates? Yes, but it is not easy.
- > Which method would render more accurate answers?
 - > Both would do the job
 - > Experts d-Cal is more or less robust to RRC & CPE
- > Higher order cond. rank correlation less accurate
- > Calibration and d-Calibration do not correlate perfectly
 - > M3M4M5, M3M4M5B and M3M4M5A CPE r(Cal,dCal) ≈ 0.05
- Many interesting theoretical questions
 - Distribution of d-Cal
 - > d-Cal & Set of all correlation matrices on n variables
 - Combination schemes
 - Method works nicely for Correlation Matrices → other dependence measures? Tail dependence for example?

Questions?

