Some problems in uncertainty modelling and foundational issues (in relation with IS1304 EJNET)

> David Rios Glasgow, April 2014

#### Some caveats

- My biases (but I tried to open my mind)
- My limits (but I have read a lot)
- Focusing on modeling and foundational issues
- Many, inevitably, at the interface with several other WGs
- Not all at same detail level (again my bias)
- Indeed, most of them rather informal questions

### **ECUATE**<sub>j</sub>

- 1. Eliciting EJ
- 2. Combining EJ
- 3. Using EJ
- 4. Assessing EJ
- 5. Technology and EJ

#### 6. A testbed project

# 1. Elicitation for main distributions

- O'Hagan et al (2006) compare 10+ methods for eliciting the parameters of a Beta(a,b) distribution (conjugate of binomial) trying to come out with a best method
- Similar studies for other conjugate distributions so as to get a best practice catalogue
  - Observables (predictive)
  - Quantiles
  - Probabilistic Inversion method
- NB: Multivariate distributions. WG2

# 1. Preference modelling

- Farquhar (1984)
- Draw new light on such methods?
- Distribution of preference over stakeholders.
  Ranges of reactions/Sensitivity analysis
- Weighted additive utility... Multiplicative utility
- Error models for utilities

#### 1. Deep uncertainties, long term uncertainties

- Meaningless?
- Worse performance at deep, long term tasks
- Decision under risk vs Decision under uncertainty..... Knight etc...
- Strategy in Stewart, French, Rios (not me!!!)

#### 1. Adversarial uncertainty modelling

• RA enhanced to include adversaries ready to increase our risks

- S-11, M-11 lead to large security investments globally
- Many modelling efforts to efficiently allocate such resources
- Parnell et al (2008) NAS review
  - Standard reliability/risk approaches not take into acocunt intentionality
  - Game theoretic approaches. Common knowledge assumption...
  - Decision analytic approaches. Forecasting the adversary action...
- Merrick, Parnell (2011) review approaches commenting favourably on Adversarial Risk Analysis



#### Non strategic opponent. I

• A lacks memory. Dirichlet-multinomial model

 $(p_1, \dots, p_n) \sim \mathcal{D}(\alpha_1, \dots, \alpha_n)$  $(p_1, \dots, p_n) | \text{data} \sim \mathcal{D}(\alpha_1 + h_1, \dots, \alpha_n + h_n)$  $p_D^{NS}(a_i) = E(p_i | \text{data}) = \frac{\alpha_i + h_i}{\sum_{j=1}^n (\alpha_j + h_j)}, i = 1, \dots, n,$ 

$$\max_{d} \sum_{i=1}^{n} \psi_D(d, a_i) p_D^{NS}(a_i)$$

#### Non strategic opponent. II

• A remembers his last attack, her last defense and the results. Matrix-beta prior model

 $(p_1, \ldots, p_n)|a_i, d_j, \omega \sim \mathcal{D}(\alpha_1^{ij\omega}, \ldots, \alpha_n^{ij\omega})$ 

 $(p_1,\ldots,p_n)|a_i,d_j,\omega,\text{data}\sim \mathcal{D}(\alpha_1^{ij\omega}+n_1^{ij\omega},\ldots,\alpha_n^{ij\omega}+n_n^{ij\omega})$ 

• To control size growth, mixture model

 $p_D(a|a_i, d_j, \omega) = w_1 p_D(a|a_i) + w_2 p_D(a|d_j) + w_3 p_D(a|\omega).$ 

Inference and forecast through a Gibbs sampler Ficticious play

# Level-k thinking opponent I

• D needs to solve

$$d^* = \arg \max_d \left[ \sum_a \psi_D(d, a) p_D(a) \right]$$

• For this, she thinks about A's problem

$$a^{*} = \arg \max_{a} \left[ \sum_{d} \psi_{D}(d, a) p_{A}(d) \right]$$
$$= \arg \max_{a} \left[ \sum_{d} \int u_{A}(d, a, \omega) p_{A}(\omega | a, d) d\omega \right] p_{A}(d)$$

- She does not know  $(u_A, p_A(.|.), p_A)$
- Models uncertainty through (U<sub>A</sub>, P<sub>A</sub>(.|.), P<sub>A</sub>)

$$A|D \sim \arg\max_{a} \sum_{d} \left[ \int U_A(d, a, \omega) P_A(\omega|a, d) d\omega \right] P_A(d) \qquad p_D(a) = p_{A|D}(a)$$

Simulate

#### Level-k thinking opponent II

 $(U_A, P_A(\cdot | \cdot), P_A)$ 

$$D|A^1 \sim \arg \max_d \sum_a \left[ \int U_D(d, a, \omega) P_D(\omega|a, d) d\omega \right] P_D(a),$$

Repeat from i = 1

Find  $P_{D^{i-1}}(A^i)$  by solving

$$\begin{array}{lcl} A^i \mid D^i & \sim & \operatorname*{arg\,max}_{a \in \mathcal{A}} \sum_{d \in \mathcal{D}} \left[ \int U^i_A(a,d,\omega) P^i_A(\omega \mid a,d) d\omega \right] P^i_A(D^i=d) \\ & & \text{with } (U^i_A,P^i_A(\cdot \mid \cdot),P^i_A) \sim F^i \end{array}$$

Find  $P_A^i(D^i)$  by solving

$$\begin{array}{lll} D^i \mid A^{i+1} & \sim & \arg\max_{d \in \mathcal{D}} \ \sum_{a \in \mathcal{A}} \left[ \int U_D^i(a,d,\omega) P_D^i(\omega \mid a,d) d\omega \right] P_D^i(A^{i+1}=a) \\ & \text{ with } (U_D^i,P_D^i(\cdot \mid \cdots),P_D^i) \sim G^i \end{array}$$

i = i + 1

MacLay, Rothschild, Guikema (2012) Rios, DRI (2012)

#### Prospect opponent

- EU model OK for D (as giving prescriptive advice)
- EU model OK for A???
- Terrorist psychology and logistics suggest optimising terrorists (cutthroat capitalism)

$$\arg\max_{a} \left[ \sum_{d} \int v_{A}(d, a, \omega) w_{A}^{1}(p_{A}(\omega|a, d)) d\omega \right] w_{A}^{2}(p_{A}(d))$$
$$A|D = \arg\max_{a} \left[ \sum_{d} \int V_{A}(d, a, \omega) W_{A}^{1} P_{A}(\omega|a, d)) d\omega \right] W_{A}^{2}(P_{A}(d)).$$

# Reconciling and learning about opponent model

• Use a mixture of opponent models

$$p_D(a) = \sum_{i=1}^k q_i p_D^i(a)$$

• Model averaging to optimize

$$\max_{d} \sum_{a} \psi_D(d, a) \left( \sum_{i=1}^k q_i p_D^i(a) \right) = \max_{d} \sum_{i=1}^k q_i \left[ \sum_{a} \psi_D(d, a) p_D^i(a) \right]$$

• Model selection to learn about weights.

#### 1. Adversarial uncertainty modeling

- Additional operational principles
- More complex structures
- Is it worth going up one level in the hierarchy
  <sup>More</sup> accurate, but more work
  - <sup>Value</sup> of information gained
- Multiple experts stopping at different levels
- ..

## 1. Multivariate extreme models

- Many extreme problems are multivariate
  - E.g. in extreme weather, floods+droughts (possibly because of El Niño-La Niña effects)
- Univariate extreme models relatively well understood
  - Choice of thresholds?
  - Mixture models
- Need to model dependence

# 2. Aggregating rules

- New aggregating rules still appearing
  - Hora et al (2013) Median aggregation
  - Lichtendahl et al (2013) Averaging quantiles
  - Jose et al (2013) Trimmed av quantiles
- A comparison with gold standards required
- Modelling as a mixture problem (prior on weights to model dependence)

#### **3. Risk Matrix methods**

| OCCURRENCE CATEGORY / EVENT TYPE |                          |                         |                |                     |          |
|----------------------------------|--------------------------|-------------------------|----------------|---------------------|----------|
| RISK MATRIX                      | Without Safety<br>Effect | Significant<br>Incident | Major Incident | Serious<br>Incident | Accident |
| Extremely<br>Unlikely            |                          |                         |                |                     |          |
| Extremely<br>Remote              |                          |                         |                |                     |          |
| Remote                           |                          |                         |                |                     |          |
| Reasonably<br>Possible           |                          |                         |                |                     |          |
| Frequent                         |                          |                         |                |                     |          |

ARMS, Bowtie, IRP,...

### 3. Risk Matrix Methods

- ICAO, for civil aviation
- COSO, for auditing
- MAGERIT, HMG Std 1, for IT Security
- IPCC SREX, for extreme weather risks

### 3. Risk Matrix Methods

- From Cox (2008)
  - Ambiguous inputs and outputs
  - Insufficient detail
  - Suboptimal resource allocation
  - Errors

### 3. Risk matrix methods

- If, leaving apart laziness, we lack of resources to perform a proper risk analysis...
- How much do we lose for not doing the whole thing?
- As in ordinal data, latent variables with thresholds for likelihoods. Similarly for impacts/utilities.
- Combining expert judgements in such setting

#### 3. Back to discretisation...

 $P(A|\hat{\theta})$   $P(A|data) = \int P(A|\theta)\pi(\theta|data)d\theta$   $P_{MC}(A|data) = \frac{1}{n}\sum_{i=1}^{n} P(A|\theta_i)$   $\tilde{P}(A) = \sum_{i=1}^{m} P(A|\theta_i)p_i$ 

Reduced order models (Grigoriu, 2009) Also usable in reporting (as in risk matrices)

# 4. Scoring rules

- Scoring rules for elicitation (Savage)
- New scoring rules appearing (eg Merkle, Steyvers, 2013)
- Compare with gold standards
- Role in elicitation
- How are they modified with extreme incentives and disincentives?

### 4. Sensitivity Analysis

Parameters -----→ Inf, Pred, Risk Ass, DM
Baucells, Borgonuovo (2013), DRI, Ruggeri (2000)

• EJ-- $\rightarrow$  Parameters -- $\rightarrow$  Inf, Pred, Risk Ass, DM

# 5. EJ Technology

 Many of the above ideas, and others already around, and others coming from IS1304 WGs could be turn into software supporting EJ services

- EJ Web Services
- Links to R, Winbugs etc...
- Open Source

# 5. The limits of expert judgement?

• EJ in times of Big Data?

• BD: The end of science as we know it....

• How do we combine EJ with Big Data

#### **Runway excursions**



#### **Runway excursions**





 $E_j = p_{0j}I_0 + p_{1j}E_j^+,$   $p_{0j} + p_{1j} = 1,$  $p_{0j}, p_{1j} \ge 0,$ 

$$p(e|a_j, d = 0, data) = \frac{1 + n_j - y_j}{2 + n_j}I_0 + \frac{1 + y_j}{2 + n_j}\frac{\alpha_j\beta_j^{\alpha_j}}{(\beta_j + e)^{\alpha_j+1}}$$

$$p(e|a, d = 1, data) = \frac{\tilde{\alpha}_j (\tilde{\beta}_j)^{\tilde{\alpha}_j}}{(\tilde{\beta}_j + e)^{\tilde{\alpha}_j + 1}},$$





(a) Runway 01 end



(c) Runway 03 end

#### 6. A testbed project

#### SAFETY

#### Safety is Critical in Civil Aviation



#### **STATE SAFETY PROGRAMME?**

- ICAO : "An integrated set of regulations and activities established by a State aimed at managing civil aviation safety"
- Support strategic decision-making in adopting better decisions when allocating scare resources to higher safety risk areas
- To implement preventive approach for safety oversight and to manage safety at a State level, States must develop a State Safety Program (SSP)



#### State Safety Program



#### PROJECT METHODOLOGY

- Incident forecasting
- Incident consequence assessment and forecasting
- Risk mapping
- Deciding on interventions (resource allocation)
- Detailed analysis of chosen incidents

- Pervaded by risk matrices
- From reactive to predictive
- Expert Judgement, multiple experts (with different interests), multiattribute preference modelling, extreme event modelling, dependence, use for policy making,....

#### Thanks

david.rios@urjc.es