
1 

 

GLOSSARY 

 
EXCALIBUR 

 

 
 

Items  
 

     quantile            

                         If X is a continuous valued random variable, the r%  

                         quantile of the distribution of X is the smallest  

                         number xr such that 

 

                         Probability{X  xr} = r/100. 

 

     quantile point       

           r/100 is the quantile point corresponding to the r%  

                         quantile xr. 

 

     scale (log, uni)     

            Variables measured on a uniform scale (uni) are  

                         uniformly distributed between quantiles, and relative  

                         information is measured with respect to the uniform  

                         distribution (suitably truncated). 

 

                         Variables measured on a loguniform scale (log) are  

                         loguniformly distributed between quantiles, and  

                         relative information is measured with respect to  

                         the loguniform distribution (suitably truncated). 

 

Thumb rule: if you think in terms of decades, use log scale 

 

     weights              

                                                Weights are used to determine the Decision Maker's  

                         distribution, as a normalized weighted linear  

                         combination of the experts' distributions (see DM).  

                         In EXCALIBUR the user may choose one of four weighting  

                         schemes, namely global weights, equal weights, item  

                         weights and user weights. 
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Calculate  
 

     global weights       

                        Global weights are determined by global measures of  

                         performance on seed variables, namely, calibration  

                         and average (over seed variables) relative  

                         information. When the significance level is set  

                         equal to zero, an expert's global weight is  

                         proportional to the product of calibration and  

                         average relative information over seed  

                         variables. For each expert, global weights are the  

                         same for all items. 

 

     item weights         

                      Item weights are determined for each item separately,  

                         using (the global measure) calibration and the  

                         relative information for each item. 

 

     user weights         

Weights supplied by the user. 

 

     significance level   

 The significance level determines the calibration  

                         threshold value (see Calibration). Calibration  

                         scores greater or equal to the significance level  

                         correspond to non-rejected statistical hypotheses.  

                         The unnormalized global and item weights are  

                         asymptotically strictly proper scoring rules (see  

                         proper scoring rule or Experts in Uncertainty,  

                         chapter 9) only if combined with significance testing  

                         at a non-zero significance level. The significance  

                         testing entails that the weights become zero whenever  

                         the calibration score is strictly less than the  

                         significance level. The theory of strictly proper  

                         scoring rules does not determine what the  

                         significance level should be, this is determined by  

                         optimization. 

 

 

     DM                   

                     Decision Maker. The DM's distributions are  

                         determined as the weighted combinations of the  

                         experts' assessments. If Fi is the cumulative  

                         distribution function of expert i for a given  

                         item, and NE is the number of experts, then: 

 

                                     i=1..NE [wi*Fi] 

                         Fi   =   .                                                                                                  

                                      i=1..NE [wi]  

                                     

                         where wi are the global, item weights or user weights. 
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     Optimized DM         

          The optimized DM results by choosing that  

                         significance level for which the global  

                         unnormalized weight of the DM is maximal.  

                         Optimization is meaningful for global and  

                         item weights.  It is not meaningful for equal or  

                         user weights. 

 

     Calibration power    

          The power of a statistical test is its ability to  

                         distinguish between rival hypotheses, and  

                         increases with the number of independent samples.  

                         Calibration power may be chosen from the interval  

                         [0.1, 1.0], and determines the effective number of  

                         samples. Choosing 50% power means reducing the  

                         resolution of the significance test to that of a  

                         test with half the number of samples. 

 

                         Instead of calculating experts calibration with  

                         the formula (see Calibration) 

 

                         C(e) = 1 - ChisqR( 2*M*I(s(e),p)) 

 

                         the following formula is used in calculations: 

 

                         C(e) = 1 - ChisqR( 2*M*I(s(e),p)*Power ) 

 

                         where Power  [0.1, 1.0]. 

 

 

     Intrinsic Range      

          The expert's quantile assessments are used to fit a  

                         minimally informative distribution, relative to the  

                         background measure (see scale). For this minimization  

                         it is necessary that the set of possible values be  

                         restricted to a bounded interval. By default CLASS  

                         uses the "10% overshoot" rule: The smallest interval  

                         containing all assessments for a given item (plus the  

                         realization, if available) is overshot by 10% above  

                         and below. The expert's information scores are  

                         affected by the choice of the overshoot; making this  

                         overshoot very large tends to suppress differences in  

                         the experts' information scores, however, the effect  

                         is very slow.  
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     Bayesian updates     

                         Bayesian updating in the present implementation is  

                         accomplished using a non-informative prior and a  

                         multinomial likelihood function. The number of  

                         possible outcomes is one plus the number of  

                         quantiles. If the n quantile points are arranged: 

 

                         0 = r0 < r1 < r2 < ... rn < rn+1 = 1 

 

                         then the j-th outcome of the multinomial  

                         distribution corresponds to the realization  

                         falling between the rj-th and rj-1-th quantile. 

                         By definition, an expert assigns the j-th outcome  

                         the probability rj - rj-1. 

 

                         In effect, the Bayesian updating recalibrates the  

                         experts' assessments (conditional on a choice of  

                         scale and cut-off points for each variable).  

                         Updated 5%, 50% and 95% quantiles are computed  

                         using a minimum information fit to the updated  

                         quantiles. 

 

 

     Discrepancy:         

            To perform discrepancy analysis, the relative  

                         information of each expert's assessment, per item, is  

                         compared with the DM's assessment for that item, and  

                         the relative information of the expert with respect  

                         to the DM is computed. These scores are averaged over  

                         all items. The average scores (which are proportional  

                         to the relative information of the respective joint  

                         distributions if all items are independent) are  

                         output. This enables the user to see which experts  

                         agree or disagree most with the DM. (Dis)agreement is  

                         not well predicted by an experts unnormalized weight. 

 

                         In addition, the ratio of the largest/smallest  

                         relative information score per item is output. This  

                         enables the user to flag those items for which the  

                         experts assessment of uncertainty differs most. 

 

     Robustness (items):  

          Seed items are excluded from the analysis, one at a  

                         time and the resulting DMs are computed and compared,  

                         using the current parameter values under "RUN". The  

                         total relative information with respect to the  

                         background measure, the calibration and the total  

                         relative information with respect to the original DM  

                         are tallied. 

 

     idem (experts)       

          This feature is similar to the previous feature,  

                         except that experts are excluded form the analysis  

                         one at a time. 
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Display Results 
 

     Calibration          

          Calibration measures the statistical likelihood of  

                         the hypothesis that the realizations are sampled  

                         independently from distributions agreeing with the  

                         expert's assessments. If s and p are the sample  

                         and theoretical distributions respectively for the  

                         the "inter-quantile interval" multinomial  

                         variable (see Bayesian Updates), and if I(s,p)  

                         denotes the relative information of s with  

                         respect to p), then calibration corresponds to the  

                         probability of seeing a deviation between s and p  

                         at least as great as I(s,p) under the above  

                         mentioned hypothesis. The larger this probability,  

                         the better the calibration. p is the same for all  

                         experts, as all experts assess the same quantiles,  

                         and s depends on the expert assessments. To  

                         indicate the dependence on expert e, we write  

                         s(e). The asymptotic value of this probability is 

 

                         C(e) = 1 - ChisqR ( 2MI(s(e),p) ) 

 

                         Where ChisqR is the cumulative Chi square  

                         distribution function with R degrees of freedom; R  

                         = the number of quantiles, M is the number of seed  

                         variables and e is the expert in question. 

 

 

     Relative information :  

         The relative information of probability vector s = (s1,...sn)  

         with respect   to p = (p1,...pn) is:  

 

    I(s|p) = (i=1..n)[siln(si/pi)] 

 

                         If s is a sample distribution gotten from M  

                         independent samples from p, then 2MI(s,p) is  

                         asymptotically Chi square distributed with n-1  

                         degrees of freedom. 

 

                         Relative information is used as a Chi square test  

                         statistic in the measure of calibration, but this  

                         quantity is not displayed (one can recover this  

                         value by inverting the Chi square cumulative  

                         distribution function, and dividing by  

                         (2Mpower). 

 

                         The relative information score displayed  

                         is the average over i of I(f(i,e),g(i)) where  

                         f(i,e) is the minimal information density function  

                         fitted to expert e's quantiles for item i, and  

                         g(i) is either the uniform or loguniform density 

                         function, depending on the scale of the item. Two  

                         scores are displayed, namely the average over all  

                         items and the average over the seed items. 
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     Unnormalized weight  

            Letting a denote the significance level, M the  

                         number of seed variables,  and 1A the indicator  

                         function for event A, the unnormalized (global)  

                         weight for assessor j (either an expert or the DM)  

                         is computed as: 

 

                         wj = C(j)(1/M)(I=1..M)[I(f(i,j),g(I))1{C(j) > a}]                                  

 

                         In other words, the unnormalized weight displayed  

                         is always the global weight. 

 

                         When using equal weights or user weights, a in the  

                         above expression is set equal to zero. 

 

                         When using item weights, a is chosen to optimize  

                         the DM's global unnormalized weight. However, the  

                         weights used to calculate the DM's assessments are  

                         not the unnormalized weights shown for the  

                         experts. Expert j's weight for item i is: 

 

                         wj(i) = C(j)I(f(i,j),g(i))1{C(j) > a}     

 

 

    normalized weight   NO DM : 

          These are the weights used in determining the DM.  

                         If equal or user weights are used, then these are  

                         shown, if global weights are used, then the  

                         normalized global weights are shown. If item  

                         weights are used, then this column is blank, since  

                         the weights used for the DM vary from item to  

                         item. 

 

     normalized weight with DM: 

          These weights result from normalizing the experts  

                         and the DM's unnormalized weights. 

 

 

     Strictly proper scoring rules: 

           Suppose an expert assesses that an uncertain quantity  

                         with outcomes 1,...n has distribution p = p1,..pn.  A  

                         scoring rule R assigns a score to this distribution  

                         on the basis of the realization, say i, R(p,i). If  

                         the expert "really believes" that the uncertain  

                         quantity follows a distribution q, then his expected  

                         score on stating p is Eq(R(p,i)).  R is a strictly  

                         proper scoring rule for a single uncertainty quantity  

                         if 

 

                         argmax Eq(R(p,i)) = q 

                           p 

 

                         In other words, the expert maximizes his expected  

                         score under R by, and only by, stating his true  

                         belief.  The classical model is based on a  

                         generalization of this notion, whereby a score is  
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                         associated with a SET of assessments and  

                         realizations. The variables in question are assumed  

                         for convenience to have the same range (1,...n).  Let  

                         the set of assessments consists of M variables with  

                         assessed distribution p (see Calibration). The set of  

                         sample realizations may be represented with the  

                         sample distribution s (see Calibration), and let  

                         R(p,M,s) assign a score on the basis of this  

                         information. If the expert really believes that the  

                         uncertain quantities have (joint) distribution Q,  

                         then EQ(R(p,M,s)) is his expected score. Consider the  

                         M marginal distributions gotten from Q for each  

                         uncertain quantity, and let q = q1,...qn denote the  

                         arithmetical average of these M marginal  

                         distributions.  It is not difficult to show that q  

                         is also the expected relative frequency distribution  

                         under Q for the uncertain quantities.  That is, qi is   

                         the expected relative frequency of outcome i under  

                         Q. Rule R(p,M,s) is a strictly proper scoring rule  

                         for average probabilities (or equivalently for  

                         expected relative frequencies) if 

 

 

                         argmax EQ(R(p,M,s)) = q 

                           p 

 

                         In (R. Cooke, Experts in Uncertainty, Oxford U. 1991) 

                         a characterization of rules with this property is given.  

The score 2*M*I(s,p) is strictly proper in this sense.   

 

The global and item  

                         weights are "asymptotically strictly proper" in the  

                         following sense: Under suitable assumptions, for all  

                         p, if p  q then for sufficiently large M (depending  

                         on p)  

 

                         EQ(R(p,M,s)) > EQ(R(p,M,s)) 

 

 

 

 


