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• What do we actually need from experts?

• What can we reasonably get from experts?

• Imprecise utility.

• Partial belief specification.
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Expert opinion in decision making

1 Suitable structures for multi-attribute utility functions.

2 Requisite expectations for evaluation of overall expected
utility.

3 Elicitation.

4 Imprecise specifications.

5 Choosing decisions, sensitivity.
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Imprecise utility: Introduction

• Consider multi-attribute decision problems.

• F & G approach: we build a utility hierarchy.
• Farrow and Goldstein (2006) etc.
• cf. Keeney and Raiffa (1993).

• At each child (non-marginal) node, we have mutual utility
independence between utilities combined at that node.

• F & G developed the theory for imprecise trade-offs.

• Now extended to allow imprecision in marginal utility
functions.

• Hence imprecision in risk aversion.
• Theory for imprecise trade-offs carries over to this.
• See Farrow (2013).
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• Imprecise trade-offs.

• Imprecise marginal utility functions.

• Possible extension: imprecise expectations.
• Lower and upper previsions
• Walley (1991)
• Troffaes and de Cooman (2014).
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Structure: Utility Hierarchy

• Utility hierarchy

• At each node we have mutual utility independence over
parents.

• This allows a finite parameterisation of the combined utility
function.

• All utilities are on a standard scale.
• Worst outcome considered: U = 0.
• Best outcome considered: U = 1.

This allows us to interpret utilities and trade-offs at all nodes.
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Combining utilities at child nodes

• Additive node

U =
s∑

i=1

aiUi

with
∑s

i=1 ai ≡ 1 and ai > 0 for i = 1, . . . , s.

• Binary node

U = a1U1 + a2U2 + hU1U2

where 0 < ai < 1 and −ai ≤ h ≤ 1− ai , for i = 1, 2, and
a1 + a2 + h ≡ 1.



Combining utilities at child nodes

• Multiplicative node

U = B−1

{
s∏

i=1

[1 + kaiUi ]− 1

}
with

B =
s∏

i=1

(1 + kai )− 1

a1 ≡ 1, k > −1 and, for i = 1, . . . , s, we have
ai > 0, kai > −1.



Utility hierarchy: Course design
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Imprecise Utility Tradeoffs

Example: Course Design, Node Q: Module Quality.

UQ = aSUS + aVUV + hQUSUV

Choose

Attribute values such that:

Either (A) US = 1, UV = 0 with certainty

Or (B) US = UV = 1 with probability α
US = UV = 0 with probability 1− α

(A) preferred when α < 0.50 so aS ≥ 0.5.
(B) preferred when α > 0.89 so aS ≤ 0.89
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Example: Course Design, Node Q: Module Quality.

UQ = aSUS + aVUV + hQUSUV

Choose

Attribute values such that:

Either (A) US = 1, UV = 0 with probability 1/3
US = 0, UV = 1 with probability 2/3

Or (B) US = UV = 1 with probability α
US = UV = 0 with probability 1− α

(A) preferred when α < 0.37 so aV ≥ 0.555− aS/2.
(B) preferred when α > 0.50 so aV ≤ 0.75− aS/2
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Elicitation and feasible set: Binary node
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Analysis

• Pareto optimality

• Select a choice.

• Almost-preference leading to Almost-Pareto sets .
• Farrow and Goldstein (2009).
• Reduce the number of choices to be considered.
• Select a proposed choice d∗.
• Identify the nodes and trade-offs responsible for the

elimination of choices.

• Examine sensitivity

• Farrow and Goldstein (2010).
• Boundary linear utility
• Volumes and distances
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Imprecision in risk aversion

• Z a scalar attribute scaled so that 0 ≤ Z ≤ 1.
• Direct method:

• Determine a range for U(z∗) where 0 < z∗ < 1.
• Probability equivalent method.
• Offer the decision maker a choice between

• dA : the attribute value corresponding to z = z∗, with
certainty, and

• dB : with probability α, the attribute value corresponding to
z = 1 and, with probability 1 − α, the attribute value
corresponding to z = 0.

• The lower utility for z∗, U1(z∗) is the largest value of α at
which the decision maker would choose dA.

• The upper utility for z∗, U2(z∗) is the smallest value of α at
which the decision maker would choose dB .

• Repeat this process at a range of values z∗.

• Interpolate (linear?). Obtain lower and upper utility functions,
U1(z) and U2(z).

• These can then be our two basis functions.
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Example — Imprecise marginal utility
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Imprecision in risk aversion

• Possibility of additional basis functions to give more flexibility
in shape.

• Eg one which is closer to U1(z) for some of the range of z
and otherwise closer to U2(z).



Partial belief specification: Bayes linear
methods

• Book: Goldstein and Woof (2007)

• Collection of unknowns. Split into two subvectors X , Y .

• Specify means, variances, covariances:

E

(
X
Y

)
=

(
mx

my

)
, Var

(
X
Y

)
=

(
Vxx Vxy

Vyx Vyy

)



Bayes linear methods

 

 X Y



Bayes linear methods

If we observe X :
adjusted mean and variance of Y :

EY |X (Y | X = x) = my + VyxV
−1
xx (x −mx),

VarY |X (Y | X = x) = Vyy − VyxV
−1
xx Vxy .



Bayes linear methods

• Alternative representation

E(X ) = mX , Var(X ) = VXX ,

Y = my + MY |X (X −mx) + UY |X ,

E(UY |X ) = 0, Var(UY |X ) = VY |X .

• So

E(Y ) = mY ,

Var(Y ) = MY |XVXXM
T
Y |X + VY |X ,

Covar(Y ,X ) = MY |XVXX .
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Example: Elicitation — lifetime
distribution

T | λ ∼ Exp(λ)

What proportion, π would fail before time τ?

π = 1− exp(−λτ)

η = log λ = log

[
− log(1− π)

τ

]
Three experts give point assessments of π.



Example: Three Experts
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Bayes linear kinematics

• More generally, what if we don’t get point values which we
treat as observations from experts but information which
causes us to change our mean and variance for η?

• For example, we elicit an interval for η.



Bayes linear kinematics

Y = my + MY |X (X −mx) + UY |X (1)

• What happens if something causes us to change our mean
and variance for X?

• Does (1) still hold?
• Do MY |X and VY |X stay the same?

• If so: Bayes linear kinematics, Goldstein and Shaw (2004)
(cf probability kinematics: Jeffrey, 1965).

• See also
• Wilson and Farrow (2010) – failure times
• Gosling et al. (2013)
• Wilson and Farrow (2017) – survival model
• Wilson and Farrow (in prep) – design
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• Are successive belief updates for B = X ∪ Y by D1,D2, . . .
commutative?

• Goldstein and Shaw (2004): under certain conditions the
commutativity requirement leads to a unique BLK update:

V−11 (B) = Var−1B|D1,...,Ds
(B | D1, . . . ,Ds) = V−1B (B)+

s∑
k=1

Pk(B)

where
Pk(B) = Var−1B|Dk

(B | Dk)− V−1B (B)

and

V−11 (B)EB|D1,...,Ds
(B | D1, . . . ,Ds) = V−1B (B)E(B)+

s∑
k=1

Fk(B)

where

Fk(B) = Var−1B|Dk
(B | Dk)EB|Dk

(B | Dk)− V−1B (B)E(B)



Bayes linear Bayes graphical model

• Goldstein and Shaw (2004)

• Bayes linear belief structure for B = {Y ,X1, . . . ,Xs} where
Y ,X1, . . . ,Xs are (vector) unknowns.

• Full (Bayesian) probability specification for each of
(X1,D1), . . . , (Xs ,Ds) .

• Given Xj , Dj is conditionally independent of everything in
{Y ,X1, . . . ,Xj−1,Xj+1, . . . ,Xs ,D1, . . . ,Dj−1,Dj+1, . . . ,Ds} .

• Use of transformation — Wilson and Farrow (2010).

• Non-conjugate updates — Wilson and Farrow (in future).



Bayes linear Bayes graphical model
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Bayes linear Bayes graphical model
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Application to Expert Judgement

• Example as before: π = Pr(T < τ).

η = log

[
− log(1− π)

τ

]

• Now suppose each expert specifies quartiles.



Application to Expert Judgement:
Possible method

• Fit Beta(ai , bi ) distribution to quartiles of Expert i .

• Interpret as likelihood:

Li ∝ πai−1(1− π)bi−1

• Combine with Beta(a0,i , b0,i ) prior for Expert i ’s judgement
about π.
Posterior: Beta(a1,i , b1,i ) where
a1,i = a0,i + ai − 1, b1,i = b0,i + bi − 1.

• Propagate through Bayes linear Bayes structure using Bayes
linear kinematics.
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Application to Expert Judgement:
Possible method

• This is work in progress!

• Should an expert who gives a more precise interval have so
much more effect?

• Possible refinement:
Let

pi =
ai

ai + bi

Use likelihood

L̃i ∝ πmipi−1(1− π)mi (1−pi )−1

where

mi = g(ni ) < ni = ai + bi .



Summary

• Structure for multi-attribute utility.

• Imprecision in trade-offs.

• Imprecision in marginal utilities.

• Identify required expectations.

• Include imprecision in expectations (future)?

• Moment-based belief elicitation using Bayes linear kinematics
and Bayes linear Bayes models — probability distributions not
fully specified.
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