Expert judgement and adversarial problems

David Rios Insua AXA-ICMAT Chair and Royal Academy

Delft, July 2017

Agenda

Adversarial problems

Adversarial Risk Analysis

ARA as a SEJ technique

Some advances in ARA in relation with EJNET Thank you(s)

Adversarial problems

- Terrorism
- Business decisions: Auctions, Competitive marketing,...
- Cybersecurity

One or more adversaries making decisions increasing our threats and affecting our results Need to forecast what others will make

Reliability Analysis

How long will a system last under certain operational conditions?

Based on data and prior info...

- Make inferences about parameters present in lifetime models
- Make forecasts about lifetimes

To make decisions about replacement, maintenance, performance, design, configuration, ...

Sometimes, several agents in scene: warranties, insurance, manufacturer(s)-consumer(s), regulator, security,...

Best HW/SW maintenance policy for a company ERP?

Model HW/SW system (interacting HW and SW blocks) Forecast block reliabilities (and correlations)

- Forecast system reliability
- Design maintenance policies
- Forecast their impact on reliability (performance, costs,...)
- Optimal maintenance policy

Best HW/SW maintenance policy for a company ERP?

Model HW/SW system (interacting HW and SW blocks) Forecast block reliabilities (and correlations) Forecast system reliability Design maintenance policies Forecast their impact on reliability (performance, costs,...) Optimal maintenance policy

NB: What happens with bad guys attacking our system?

Reliability

Adversarial Reliability

Risk Analysis

What would be the impact over system performance of identified threats?

Based on data and prior info...

- Make forecasts of threat occurrence
- Make forecasts of threat impacts

To make risk management decisions

Sometimes, other agents in scene: security, cybersecurity, competitive marketing, social robotics, auctions,...

Best security resource allocation in a city?

City as a map with cells

Each cell has a value (multiattribute)

For each cell, a predictive model of delictive acts (COMPSTAT, PREDPOL,...)

Allocate security resources (given constraints)

For each cell predict impact of resource allocation

Optimal resource allocation

Best security resource allocation in a city?

City as a map with cells

Each cell has a value (multiattribute)

For each cell, a predictive model of delictive acts (COMPSTAT, PREDPOL,...)

Allocate security resources (given constraints)

For each cell predict impact of resource allocation

Optimal resource allocation

NB: The bad guys also operate intelligent and organisedly!!!

Risk Analysis

Risk Analysis

Agenda

Adversarial problems **Adversarial Risk Analysis** ARA as a SEJ technique Some advances in ARA in relation with EJNET Thank you(s)

Motivation

• RA extended to include adversaries ready to increase our risks

- S-11, M-11,.. lead to large security investments globally, some of them criticised
- Many modelling efforts to efficiently allocate such resources
- Parnell et al (2008) NAS review
 - Standard reliability/risk approaches not take into acocunt intentionality
 - Game theoretic approaches. Common knowledge assumptions...
 - Decision analytic approaches. Forecasting the adversary action...
- Merrick, Parnell (2011) review approaches commenting favourably on ARA properly apportioning uncertainty

ARA

- A framework to manage risks from actions of intelligent adversaries (DRI, Rios, Banks, JASA 2009)
- One-sided prescriptive support
 - Use a SĖU model
 - Treat the adversary's decision as uncertainties
- Method to predict adversary's actions
 - We assume the adversary is a *expected utility maximizer*
 - Model his decision problem
 - Assess his probabilities and utilities
 - Find his action of maximum expected utility

(But other *descriptive* models are possible)

- Uncertainty in the Attacker's decision stems from
 - our uncertainty about his probabilities and utilities
 - but this leads to a hierarchy of nested decision problems

(random, noninformative, level-k, heuristic, mirroring argument,...) vs (common knowledge)

- Kadane, Larkey (1982), Raiffa (1982,2002)
- Lippman, McCardle (2012)
- Stahl and Wilson (1995) D. Wolpert (2012)
- Rothkopf (2007)
- MacLay, Rothschild, Guikema (2013,2014)
- Banks, Rios, DRI (2015)

Sequential DA game

- Two intelligent players
 - Defender and Attacker. D knows A's judgements

Standard GT Analysis

Expected utilities at node S

 $\psi_D(d,a) = p_D(S=0|d,a) \ u_D(d,S=0) \ + \ p_D(S=1|d,a) \ u_D(d,S=1)$

 $\psi_A(d,a) = p_A(S = 0 \mid d,a) \ u_A(a,S = 0) \ + \ p_A(S = 1 \mid d,a) \ u_A(a,S = 1)$

Best Attacker's decision at node A

 $a^*(d) = \operatorname{argmax}_{a \in \mathcal{A}} \psi_A(d, a)$

Assuming Defender knows Attacker's analysis Defender's best decision at node D

 $d^* = \operatorname{argmax}_{d \in \mathcal{D}} \psi_D(d, a^*(d))$

Solution: $(d^*, a^*(d^*))$

Nasheq. Subgame perfect equilibrium

Supporting the Defender

Supporting the Defender

Supporting the Defender: The assessment problem

Sequential D-A

- 1. Assess (p_D, u_D) from the Defender
- 2. Assess $F = (P_A, U_A)$, describing the Defender's uncertainty about (p_A, u_A)
- 3. For each d, simulate to assess $p_D(A|d)$ as follows:

(a) Generate
$$(p_A^i, u_A^i) \sim F$$
, $i = 1, ..., n$
Solve $a_i^*(d) = \operatorname{argmax}_{a \in \mathcal{A}} \psi_A^i(d, a)$
(b) Approximate $\hat{p}_D(A = a|d) = \#\{a = a_i^*(d)\}/n$

4. Solve the Defender's problem

$$d^* = \operatorname{argmax}_{d \in \mathcal{D}} \psi_D(d, a_1) \, \hat{p}_D(A = a_1 | d) \, + \, \psi_D(d, a_2) \, \hat{p}_D(A = a_2 | d)$$

Simultaneous and beyond gets more complicated!!!

Agenda

Adversarial problems

Adversarial Risk Analysis

ARA as a SEJ technique

Some advances in ARA in relation with EJNET Thank you(s)

Supporting the Defender

Fermitisation (Tetlock)

• Extension of the conversation

Decompose a complex probability into probabilities simpler to assess who are then combined by total probability formula

Fermitisation (Tetlock)

• Extension of the conversation

Decompose a complex probability into probabilities simpler to assess who are then combined by total probability formula

• ARA

Decompose a complex probability into probabilities simpler to assess who are then combined by *maximising random expected utilities Decision Analysis!!!!*

Supporting the Defender: The assessment problem

Agenda

- Adversarial problems
- Adversarial Risk Analysis
- ARA as a SEJ technique

Some advances in ARA in relation with EJNET Thank you(s)

ARA EJNET Advances

- Conceptual Methodological Foundational Computational
 - Applied

Conceptual. GT solutions not robust and SARA

- GT solutions robust. A Flat Maxima Principle
- GT solutions actually not robust!!!

If GT solution robust, STOP. Else, ARA. If ARA robust, STOP Else, gamma-minimax et al

Conceptual. Opponent modeling

- Aleatory uncertainty. Risk Analysis
- Epistemic uncertainty. Model mixing
- Concept uncertainty

Reconcile various concepts through a mixture

Opponent modeling

- Non strategic
 - 'Against Nature'. Multi-Dir. Markov memory models. Fictitious play
- Nasheq
 - Opponent seeks a Nash eq.
- Level-k
 - Hierarchy. Stop when no more info available. Noninformative
- Mirroreq

. . . .

- Consistency condition for Defender beliefs.
- Prospectmax
 - Maximises a prospect theory functional

Computational. Beyond the templates

More general interactions

A method using the relevance graph

Foundational. Adversarial Statistical Decision Theory

A Point Estimation A Inter. Estimation A Hypothesis Test. A Prediction A Classification A Machine Learning

All things adversarial???

....

(b) Data-fiddler attacker

(c) Simultaneous ASDT problem

Applied: Case Studies and Applications

Problem	Defender	Attacker	Specificities	Template
ATC protection	Airport authority	Terrorist	Single site	D-> A
Piracy	Ship owner	Pirates	Single site	D- >A - > D
Metro	Operator	Pickpock Fare evasion	Multisite Multiattack, Cascade	D->A
Urban security	Police	Mob	Multisite spatial	D->A->D
Train	DoT, DoD	Terrorist	Multisite network	D->A->D
SME IS	Company	Competitor	Cyber, Integrated with RA. Cyberins	D->A
Oil rig cybercontrolled	Oil company	Sponsored hackers	Cyber, Multiattack	D->A->D
CI	Owner	Terrorist	Multistage	General
Social Robotics	Robot	User	Multistage, Emotions	D->A->D

Acceptance sampling, Spam detection, Fraud detection, Energy Risk, Defence vs UAV, Cybersec,...

Methodological. The ARA cycle

- 1. Structure problem
 - Underlying topological structure (single site, spacial, network, multiple site,...)
 - Determine Defenders and eventual coordination (single, multiple uncoordinated, multiple coordinated)
 - Determine Attackers, rationality style and eventual coordination

(single, uncoordinated, cascade, coordinated,...)

- Relevant template for each attacker and site (D A, D->A, D->A->D, BAID,...)
- Expand templates for additional uncertainties
- Determine resources and resource constraints

The ARA cycle

- 1. Structure problem
- 2. Assess problem
 - Determine Defender's own objectives, utilities, probabilities.
 - Determine Attacker's objectives, (random) utilities, (random) probabilities, as required
- 3. Solve problem
 - Simulate attacker problem to forecast actions
 - Optimise defender problem for optimal resource allocation
 - Sensitivity analysis
 - Communicate

Agenda

- Adversarial problems
- Adversarial Risk Analysis
- ARA as a SEJ technique
- Some advances in ARA in relation with EJNET Thank you(s)

David Banks, Jesus Rios, Refik Soyer, Fabrizio Ruggeri, Jorge Ortega, Ahti Salo, Juho Roponen, Dani Rasines, Vesela Radovic, Cesar Alfaro, Javi Gomez, Aitor Couce, Siv Houmbd, Wolter Pieters, Roi Naveiro, Tinu Adebanji, Alberto Redondo,....

Bedankt EJNET!!!

Bedankt Roger!!!