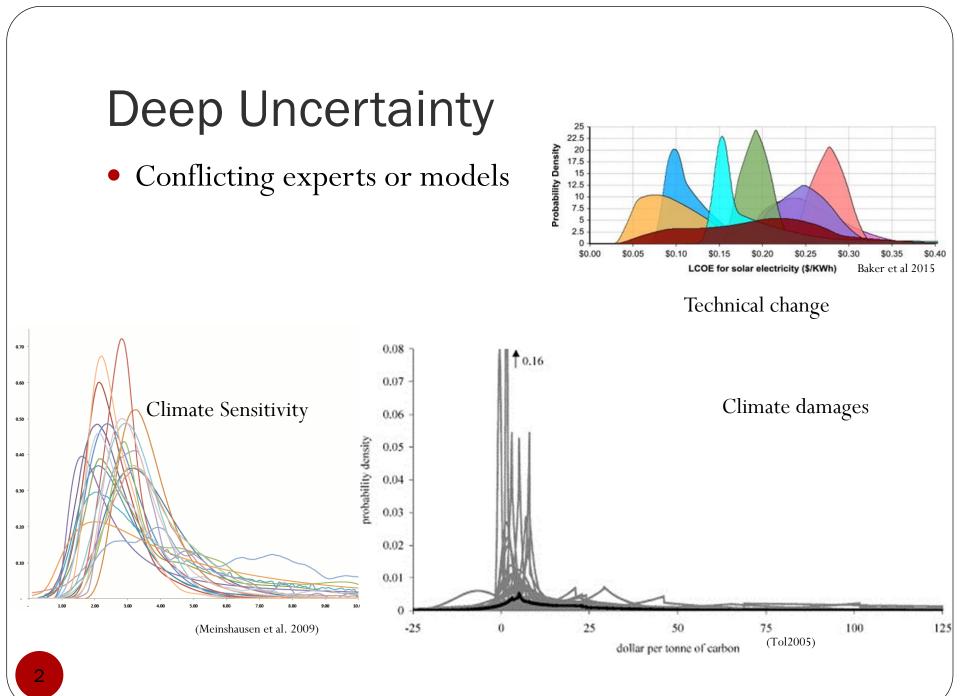
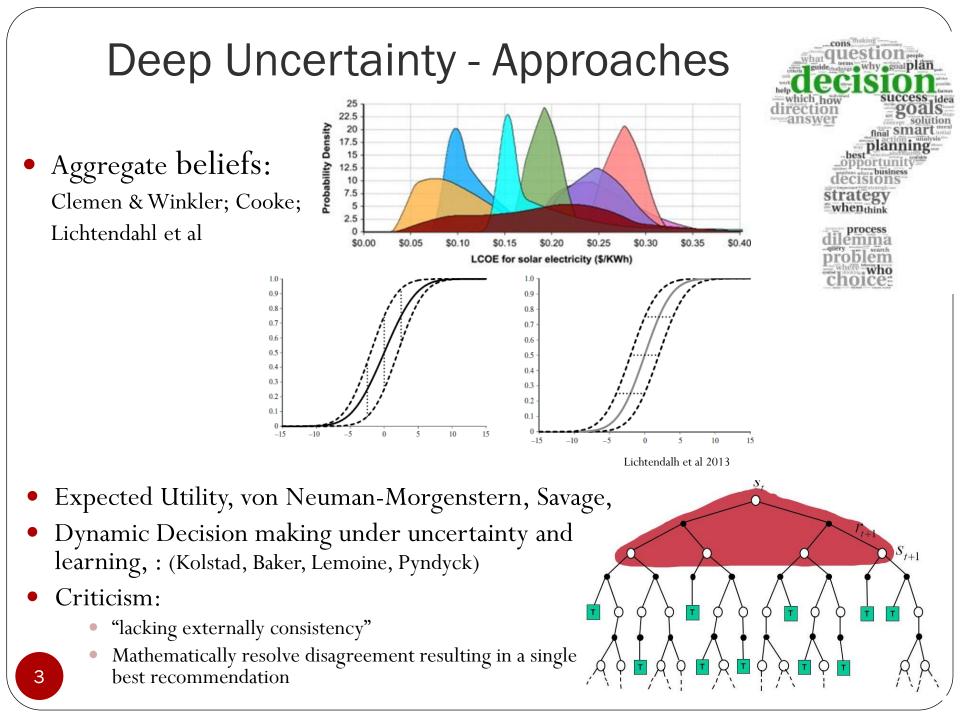
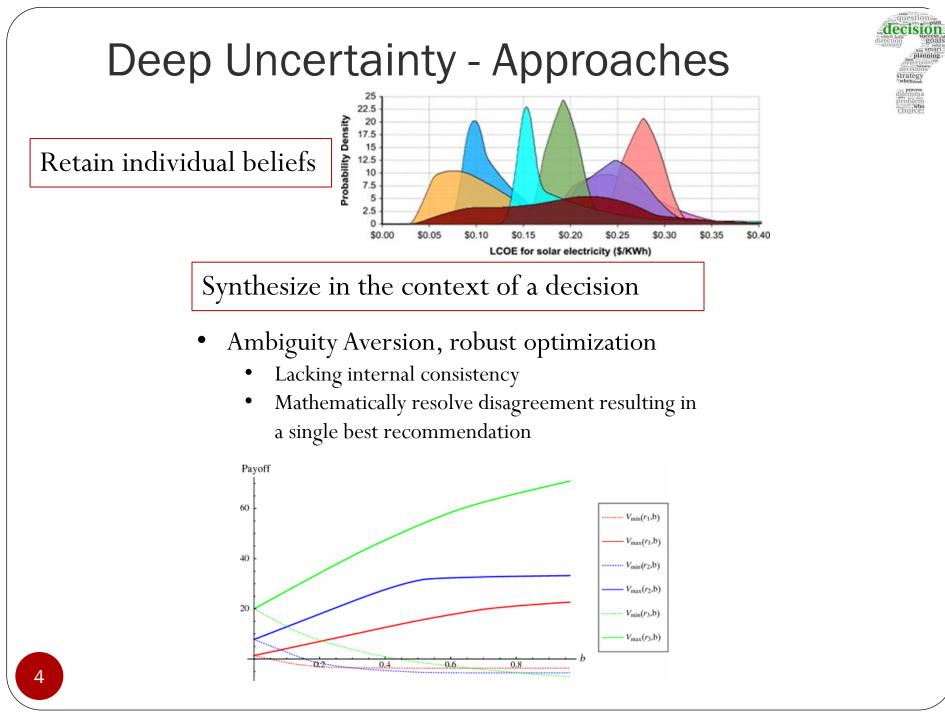
Finding common ground when experts disagree: Robust Portfolio Decision Analysis


Erin Baker, University of Massachusetts Valentina Bosetti, Bocconi University and FEEM Ahti Salo, Aalto University


COST IS1304 Conference 5 July 2017





Our approach: Robust Portfolio **Decision Analysis**

- Considers *portfolios of alternatives* (technologies, policies)
- {high R&D into nuclear; solar subsides; 450ppm; cap&trade} possible portfolios
 - {low R&D into nuclear; solar subsidies; carbon tax}
 - Results in a set of "good" portfolios
 - {portfolio1, portfolio 7, portfolio 10,...}
 - Provides insights about *good individual projects*
 - core projects = {solar subsidies, ...}

All sets on this slide are purely illustrative; these are not results.

Our approach: Robust Portfolio **Decision Analysis**

- Considers *portfolios of alternatives* (technologies, policies)
- {high R&D into nuclear; solar subsides; 450ppm; cap&trade} possible portfolios
 - {low R&D into nuclear; solar subsidies; carbon tax}
 - Results in a set of "good" alternatives
 - {portfolio1, portfolio 7, portfolio 10,...}
 - Provides insights about *good individual projects*
 - core projects = {solar subsidies, ...}

May help to open up the dialogue on climate change. "Emphasize solutions and benefits".

Center for Research on Environmental Decisions and ecoAmerica. (2014). Connecting on Climate: A Guide to Effective Climate Change Communication. New York and Washington, D.C.

RPDA: theoretical framework

- Belief dominance: From a descriptive concept to a normative approach
- From non-dominated portfolios to robust individual alternatives

A descriptive concept

- Bewley (2002): "Knightian Decision Making"
- Gilboa et al (2010): "Objectively Rational"
- Stoye (2012): "Admissability"

Axioms of SEU minus completeness

"...rationalize many economic phenomena which otherwise seem difficult to explain..."

 Danan et al (2016): "Unambiguous Preferences", applied to "Social Robust Decisions"

Belief Dominance: Terminology

- "Alternatives" x_i
- Uncertain outcomes z
- "Preferences" U(x,z)

		x ₁	x ₂	• • •	x _n
	f_1	$f_1(z, x_1)$	$f_1(z, x_2)$	•••	$f_1(z, x_n)$
Beliefs		•••	•••	•••	•••
	f _m	$f_n(z, x_1)$	$f_2(z, x_2)$	•••	$f_2(z, x_n)$

Beliefs are exogenous if $f_1(z,x_i) = f_1(z,x_j)$ for all i,j

Belief Dominance

An alternative* **x** dominates an alternative **x**' over a set Φ of beliefs (probability distributions) if:

 $\int U(\mathbf{x};z)f(z;\mathbf{x})dz \ge \int U(\mathbf{x}';z)f(z;\mathbf{x}')dz \ \forall f \in \Phi$

x is a vector of decision variables z is a random variable with probability distribution f U is an objective function

*An "alternative" may be a portfolio.

Belief Dominance (example)

An alternative * **x** dominates an alternative **x**' over a set Φ of probability distributions if:

 $\int U(\mathbf{x};z)f(z;\mathbf{x})dz \ge \int U(\mathbf{x}';z)f(z;\mathbf{x}')dz \ \forall f \in \Phi$

x is a vector of decision variables (investments into technology R&D, solar, nuclear,...)

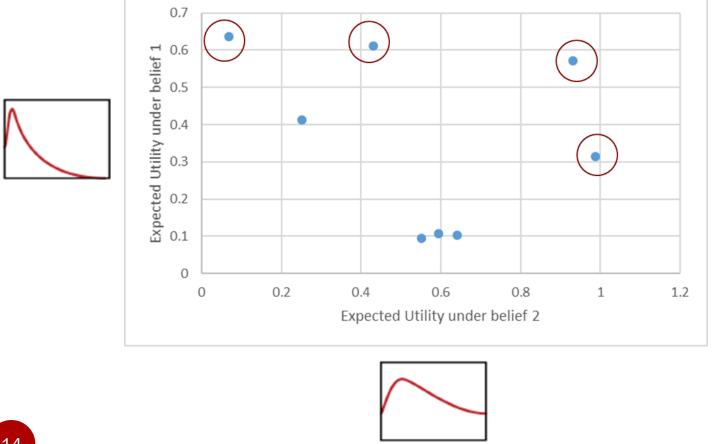
Z is a random variable with probability distribution f (outcomes of technical change, such as cost; distribution depends on investment)

U is an objective function (The total cost of abatement, derived from an IAM)

*An "alternative" may be a portfolio.

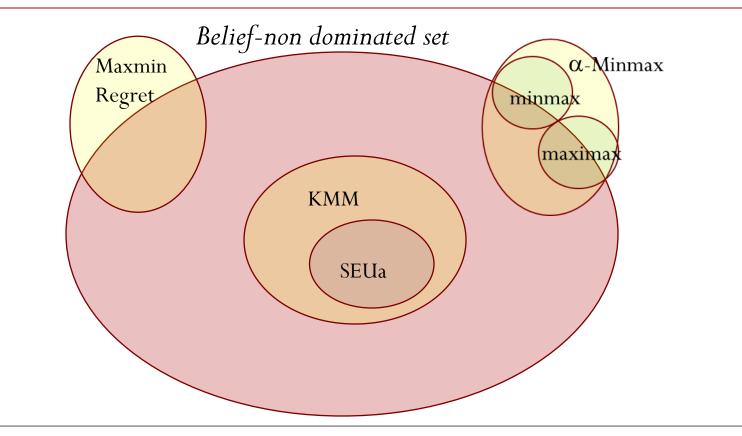
Dominance Concepts • *Belief*: fix U; alternative x dominates alternative x' $\int U(\mathbf{x}; z) f(z; \mathbf{x}) dz \ge \int U(\mathbf{x}'; z) f(z; \mathbf{x}') \quad \forall f \in \Phi$

• *Stochastic*: fix x; distribution f dominates distribution g


$$\int U(\mathbf{x};z)f(z)dz \ge \int U(\mathbf{x};z)g(z) \ \forall \mathbf{U} \in \mathbf{V}_{S}$$

• *Pareto*: fix f; alternative x dominates alternative x'

$$\int U(\mathbf{x};z)f(z)dz \ge \int U(\mathbf{x};z)f(z) \quad \forall \mathbf{U} \in \mathbf{V}_{P}$$


Belief Dominance

An alternative is *non-dominated* if there is no other alternative that dominates it.

Belief non-dominance encompasses robustness concepts

Theorem: At least one optimal solution to robustness concept C is in the belief-non-dominated set.

From portfolios to individual alternatives

- Each portfolio is made up of individual projects i=1..I
- Define $x_i = 1$ if project i is funded and 0 otherwise
- Define a portfolio $\vec{x} \equiv (x_1, ..., x_N)$
- Let ND = {non-dominated portfolios}

$$core \equiv \left\{ i \mid x_i = 1 \ \forall \vec{x} \in ND \right\}$$
$$ext \equiv \left\{ i \mid x_i = 0 \ \forall \vec{x} \in ND \right\}$$
$$bord \equiv \left\{ i \mid i \notin core \text{ and } i \notin ext \right\}$$


non-dominated portfolios

a	b	С	d	e	f
1	0	0	1	1	0
1	0	1	1	1	0
1	0	0	1	1	0
0	0	1	1	0	1
0	0	0	1	0	1
0	0	1	1	0	1

project \mathbf{b} is in exterior; project \mathbf{d} is in core

Proof of concept: Public energy technology R&D portfolios

Proof of concept: Energy Technology R&D Portfolio in Response to Climate Change.

The computational model

$$H(\mathbf{x}, \tau) \equiv \sum_{l=1}^{1000} p_{\tau}(\mathbf{z}_{l}; \mathbf{x}) TAC(\mathbf{z}_{l}, s) + \kappa B(\mathbf{x}) \quad \text{For s} = 2.6 \,(\sim 450 \text{ppm})$$

s.t. $\sum_{j} x_{ij} = 1 \,\forall i$
• x belief dominates x' if $H(\mathbf{x}, \tau) \leq H(\mathbf{x}', \tau) \,\forall \tau$

 $x_{ij} = 1$ if technology i is invested in at the jth funding level; 0 otherwise i = solar, nuclear, CCS, bio-elec, bio-fuel j = low, mid, high TAC(z,s) = total abatement cost for stabilization s, tech outcome z B(x) = total R&D investment for portfolio x $\kappa = opportunity cost of investment$

 p_τ is the discrete probability of outcome z_l given investment x. We use importance sampling to estimate p_τ .

Portfolios		T	echnologi	es	Objectives ENPV(Cost in billions of \$2005				
	Solar	Nuc	BF	BE	ccs	Combined	Harvard	FEEM	UMass
1	Low	High	High	High	Mid	20736	21770	24327	15509
2	Low	Mid	High	High	Mid	20768	21654	2 4188	15 72 0
3	Low	High	Mid	High	Mid	20838	21929	24525	15301
4	Mid	High	High	High	Mid	20889	21588	24345	15813
5	Low	Mid	Mid	High	Mid	20912	21806	24434	15 2 13
6	Mid	Mid	High	High	Mid	20922	21513	24163	1616 <mark>2</mark>
7	Mid	High	Mid	High	Mid	21084	21741	24548	15509
8	Low	High	Low	High	Mid	21135	21417	24307	20029
9	High	Mid	Low	High	High	21136	21325	22747	20003
10	Mid	Mid	Mid	High	Mid	21144	21659	24379	155 2 8
11	High	High	Low	High	High	21320	2 1581	22901	19324
12	Low	High	Mid	High	Low	21334	22744	25468	15153
13	Low	Mid	Mid	High	Low	2 1491	2267 1	25442	15142

13 out of 243 total are non-dominated

Portfolios		т	echnologi	es		Objectives	ENPV(Cos	t in billions	of\$2005)
	Solar	Nuc	BF	BE	ccs	Combined	Harvard	FEEM	UMass
1	Low	High	High	High	Mid	20736	21770	24327	15509
2	Low	Mid	High	High	Mid	20768	21654	2 4188	15 72 0
3	Low	High	Mid	High	Mid	20838	21929	24525	15301
4	Mid	High	High	High	Mid	20889	21588	24345	15813
5	Low	Mid	Mid	High	Mid	20912	21806	24434	15 2 13
6	Mid	Mid	High	High	Mid	20922	21513	24163	1616 2
7	Mid	High	Mid	High	Mid	21084	21741	24548	15509
8	Low	High	Low	High	Mid	21135	21417	24307	20029
9	High	Mid	Low	High	High	21136	21325	22747	20003
10	Mid	Mid	Mid	High	Mid	21144	21659	24379	155 2 8
11	High	High	Low	High	High	21320	2 1581	22901	19324
12	Low	High	Mid	High	Low	21334	22744	25468	15153
13	Low	Mid	Mid	High	Low	2 1491	2267 1	25442	151 42

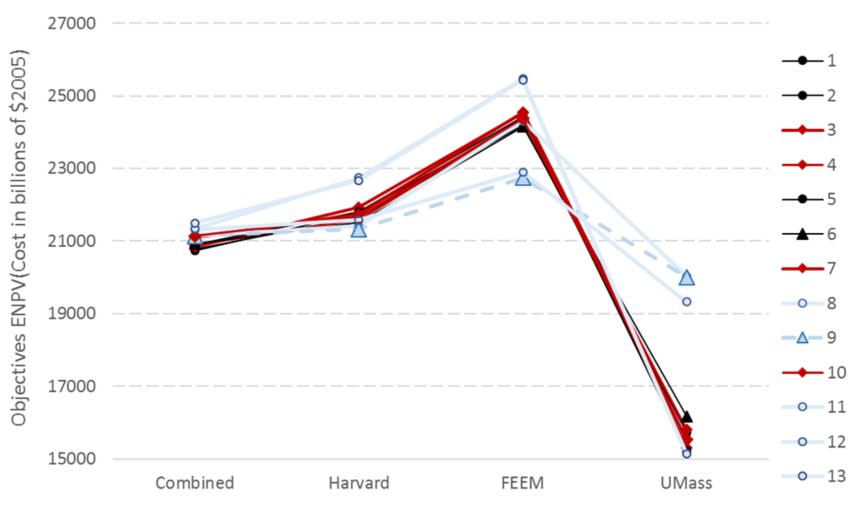
Optimal under combined distribution

Portfolios		1	echnologi	es	Objectives ENPV(Cost in billions of \$2005)				
	Solar	Nuc	BF	BE	ccs	Combined	Harvard	FEEM	UMass
1	Low	High	High	High	Mid	20736	21770	24327	15509
2	Low	Mid	High	High	Mid	20768	21654	24188	15 72 0
3	Low	High	Mid	High	Mid	20838	21929	24525	15301
4	Mid	High	High	High	Mid	20889	21588	24345	15813
5	Low	Mid	Mid	High	Mid	20912	21806	24434	15 2 13
6	Mid	Mid	High	High	Mid	20922	21513	24163	16162
7	Mid	High	Mid	High	Mid	21084	21741	24548	15509
8	Low	High	Low	High	Mid	21135	21417	24307	20029
9	High	Mid	Low	High	High	21136	21325	22747	20003
10	Mid	Mid	Mid	High	Mid	21144	21659	24379	15528
11	High	High	Low	High	High	21320	2 1581	22901	19324
12	Low	High	Mid	High	Low	21334	22744	25468	15153
13	Low	Mid	Mid	High	Low	21491	2267 1	25442	15142

Optimal under Minmax Regret

Portfolios		-	rechnolog	ies	Objectives ENPV(Cost in billions of \$2005)				
	Solar	Nuc	BF	BE	ccs	Combined	Harvard	FEEM	UMass
1	Low	High	High	High	Mid	20736	21770	24327	15509
2	Low	Mid	High	High	Mid	20768	21654	24188	157 2 0
3	Low	High	Mid	High	Mid	20838	21929	24525	15301
4	Mid	High	High	High	Mid	20889	21588	24345	15813
5	Low	Mid	Mid	High	Mid	20912	21806	24434	15 2 13
6	Mid	Mid	High	High	Mid	20922	21513	24163	1616 2
7	Mid	High	Mid	High	Mid	21084	21741	24548	15509
8	Low	High	Low	High	Mid	21135	21417	24307	20029
9	High	Mid	Low	High	High	21136	21325	22747	20003
10	Mid	Mid	Mid	High	Mid	21144	21659	24379	155 2 8
11	High	High	Low	High	High	21320	2 1581	22901	19324
12	Low	High	Mid	High	Low	21334	22744	25468	15153
13	Low	Mid	Mid	High	Low	2 1491	2267 1	25442	151 42

Optimal under Harvard, FEEM, Maxmin

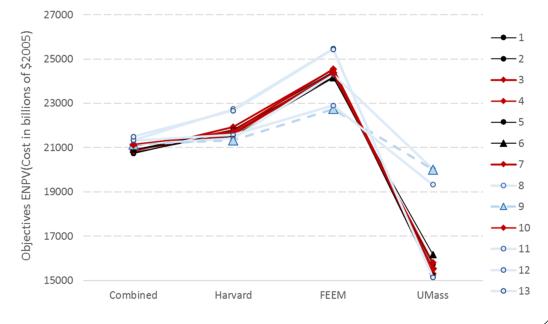

Portfolios		-	Fechnolo	gies	Objectives ENPV(Cost in billions of \$2005				
	Solar	Nuc	BF	BE	ccs	Combined	Harvard	FEEM	UMass
1	Low	High	High	High	Mid	20736	21770	24327	15509
2	Low	Mid	High	High	Mid	20768	21654	24188	15 72 0
3	Low	High	Mid	High	Mid	20838	21929	24525	15301
4	Mid	High	High	High	Mid	20889	21588	24345	15813
5	Low	Mid	Mid	High	Mid	20912	21806	24434	15 2 13
6	Mid	Mid	High	High	Mid	20922	21513	24163	1616 2
7	Mid	High	Mid	High	Mid	21084	21741	24548	15509
8	Low	High	Low	High	Mid	21135	21417	24307	20029
9	High	Mid	Low	High	High	21136	21325	22747	20003
10	Mid	Mid	Mid	High	Mid	21144	21659	24379	155 2 8
11	High	High	Low	High	High	21320	2 1581	22901	19 32 4
12	Low	High	Mid	High	Low	21334	22744	25468	15153
13	Low	Mid	Mid	High	Low	21491	2267 1	25442	151 42

Optimal under UMass and Maximax

Portfolios	Rob	ustness Concepts	
	SEUa	α-maxmin	КММ
1	Combined distribution		
2	Equal weight	$\alpha = 0.7$	Higher Ambiguity Tolerance
3			
4			
5	Equal weight: Harvard, FEEM, UMass	$\alpha = 0.1-0.6$	
6		Minmax Regret	
7			
8			
9	FEEM, Harvard	$\alpha = 0.9, 1$	Lower Ambiguity Tolerance
		(Maxmin)	
10			
11		$\alpha = 0.8$	
2 12			
13	UMass	$\alpha = 0$ (Maximax)	

Portfolios	Rob	ustness Concepts	
	SEUa	α-maxmin	КММ
1	Combined distribution		
2	Equal weight	$\alpha = 0.7$	Higher Ambiguity Tolerance
3			
4			
5	Equal weight: Harvard, FEEM, UMass	$\alpha = 0.1 - 0.6$	
6		Minmax Regret	
7			
8			
9	FEEM, Harvard	$\alpha = 0.9, 1$	Lower Ambiguity Tolerance
		(Maxmin)	
10			
11		$\alpha = 0.8$	
2 12			
13	UMass	$\alpha = 0$ (Maximax)	/

The non-dominated portfolios



NPV of the cost of each portfolio. Red portfolios not solution to other concepts Portfolio 6 is MinMax Regret; 9 is MinMax

29

A subset of more robust portfolios

Portfolio		Te	chnolog	ies		R&D(millions	Objective	s ENPV(Co	st in billion	s of \$2005)
	Solar	Nuc	BF	BE	CCS	\$2005/yr)	Combined	Harvard	FEEM	UMass
1	1%	76%	9%	7%	7%	234	20736	21770	24327	15509
2	2%	2 6%	27%	22%	23%	75	20768	21654	24188	15720
3	1%	82%	2%	8%	8%	218	20838	21929	24525	15301
4	2%	75%	9%	7%	7%	237	20889	21588	24345	15813
5	3%	33%	6%	29%	29%	59	20912	21806	24434	15213
6	5%	25%	26%	22%	22%	78	20922	21513	24163	1616 <mark>2</mark>
7	2%	81%	2%	8%	8%	220	21084	21741	24548	15509
10	7%	32%	6%	28%	28%	61	21144	21659	24379	15528

Results: core and exterior projects

Portfolios		\bigcap	Technologi	€ S		Objectives ENPV(Cost in billions of \$2			
	Solar	Nuc	BF	BE	ccs	Combined	Harvard	FEEM	UMass
1	Low	High	High	High	Mid	20736	21770	24327	15509
2	Low	Mid	High	High	Mid	20768	21654	24188	15 72 0
3	Low	High	Mid	High	Mid	20838	21929	24525	15301
4	Mid	High	High	High	Mid	20889	21588	24345	15813
5	Low	Mid	Mid	High	Mid	20912	21806	24434	15213
6	Mid	Mid	High	High	Mid	20922	21513	24163	16162
7	Mid	High	Mid	High	Mid	21084	21741	24548	15509
8	Low	High	Low	High	Mid	21135	21417	24307	20029
9	High	Mid	Low	High	High	21136	21325	22747	20003
10	Mid	Mid	Mid	High	Mid	21144	21659	24379	15528
11	High	High	Low	High	High	21320	2 1581	22901	19324
12	Low	High	Mid	High	Low	21334	22744	25468	15153
13	Low	Mid	Mid	High	Low	21491	22671	25442	151 42

BE high is in core; Nuc low is in exterior

Results: core and exterior projects among "robust" group

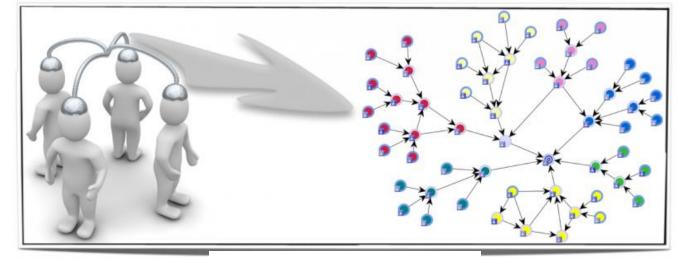
Portfolio		Te	chnolog	ies		R&D(millions	Objective	s ENPV(Co	stinbillion	s of \$2005)
	Solar	Nuc	BF	BE	CCS	\$2005/yr)	Combined	Harvard	FEEM	UMass
1	1%	76%	9%	7%	7%	234	20736	21770	24327	15509
2	2%	26%	27%	22%	23%	75	20768	21654	24188	15720
3	1%	82%	2%	8%	8%	218	20838	21929	24525	15301
4	2%	75%	9%	7%	7%	237	20889	21588	24345	15813
5	3%	33%	6%	29%	29%	59	20912	21806	24434	15213
6	5%	25%	26%	22%	22%	78	20922	21513	24163	1616 <mark>2</mark>
7	2%	81%	2%	8%	8%	220	21084	21741	24548	15509
10	7%	32%	6%	28%	28%	61	21144	21659	24379	15528

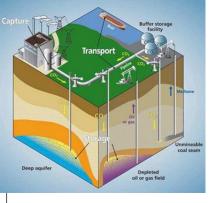
Solar high excluded Nuc low excluded

Biofuels low excluded

Bio-electricity high and CCS mid in the core

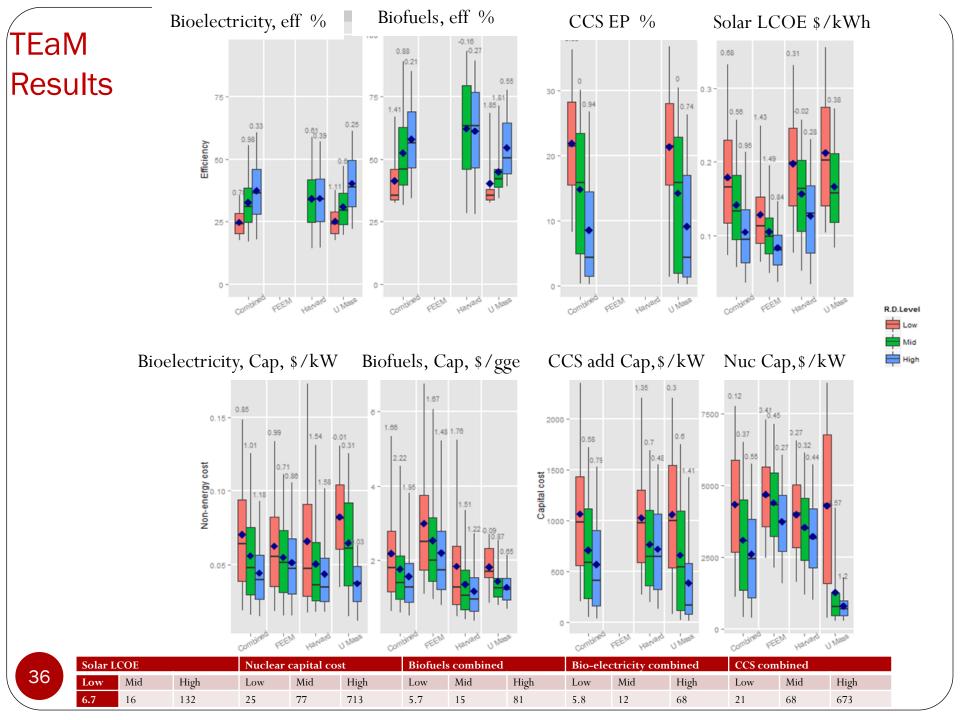
Future work – When Models Disagree


- Model uncertainty and parametric uncertainty $H(\mathbf{x};\tau,m) = \sum_{i=1}^{1000} p_{\tau\mathbf{x}}(\mathbf{z}_i) [TAC_m(\mathbf{z}_i;s)] + \kappa \mathbf{B}_{\mathbf{x}}$
 - τ is beliefs over parametric uncertainty; *m* represents individual models
 - portfolio x belief dominates x' if: $H(\mathbf{x};\tau,m) \leq H(\mathbf{x}';\tau,m) \forall \tau,m$


Conclusions

- Belief Dominance operationalizes a descriptive concept, allowing analysts to derive a set of good alternatives under conflicting beliefs.
 - Synthesizes beliefs in a decision context
 - Avoids worst-case analysis
- RPDA leads to implications about individual alternatives
 - Example: A high investment into bio-electricity was robust across all beliefs
- By focusing on a set of good alternatives, RPDA uses the best available knowledge to support decision making in a way that preserves flexibility for decision makers.

Expert Elicitation on energy technologies


A structured process for eliciting subjective probability distributions from experts about items of interest to decision makers.

