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1. INTRODUCTION
Problem Description...

* Maintenance optimization has been a focus of research interest.

*  Dekker (1996) and Mazzuchi er al. (2014) provide an elaborate review and
analysis of applications of maintenance optimization models.

"Bestdes, many textbooks on operations research
use replacement models as examples’, Dekker (1990).

* A main bottleneck in the implementation of maintenance optimization
procedures is the determination of the life length distributions.

*  Due to scarcity of good component failure data, determination via known
statistical estimation procedures is, in many cases, impossible. Why is that?
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1. INTRODUCTION
Problem Description...

Answer:
*  Scarcity of failure data is inherent to an efficient preventive maintenance
environment. The complete component life cycle will rarely be observed.

*  Occurrence of many failures, on the other hand, will lead to equipment
modification, making past data obsolete.

Proposed Solution:
*  One approach to overcome this scarcity of data is to determine the lifetime
distribution based on the use of expert judgment.

* In the absence of data, normative experts are tasked with specifying
distributions that are consistent with a substantive expert's judgment,
whom may not be statistically trained.
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1. INTRODUCTION
Literature Review...

* To facilitate such a situation, integration of graphically interactive and
statistical elicitation procedures for distribution modeling has been a topic
of research for quite some time with some re-invigoration more recently.

*  See, DeBrota et al. (1989), Van Dorp (1989), AbouRizk ez al. (1992), Van
Noortwijk et al. (1992), Wagner and Wilson (1996).

* More recently : Van Dorp and Mazzuchi (2000), Garthwaite, Kadane
and O'Hagan (2005) and Morris et al. (2014), the latter developing a web-
based distribution elicitation tool called 'MATCH!', and Shih N (2015).

*  Most of these indirect elicitation procedures "fit" continuous distribution to
the elicited expert judgement, but do not match the expert judgement
exactly, with the exception of Van Dorp and Mazzuchi (2000) and Shih N
(2015) who match two elicited quantiles uniquely to a beta distribution.
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1. INTRODUCTION
GTSP Distribution...

*  Herein, the elicitation of lower and upper quantile estimates x, and x,
and the most likely estimate 1, x,, < 1 < x,, of a five-parameter

Generalized Two-Sided Power (GTSP) distribution (Herrerfas ¢z a/., 2009)
is proposed.

*  'The GTSP distribution with support (a, b) has prob. density function (pdf)

( o m—1
(77__a> , fora < x < n

f(2]©) = C(©) x S (1)

b n—1
\(m) , fOI'T]SZE<b,

where © = {a,n,b, m,n) and

O = o= ?

. The GTSP distribution was suggested as a more flexible alternative to the
classical beta distribution in the unimodal domain.
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1. INTRODUCTION

MR diagram GTSP Distribution...

*  Moment Ratio (MR) diagrams plot kurtosis (32 against 1/ | 31 | with
convention that /| 81| retains the sign of skewness (3.
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Figure 1. Moment Ratio (1/ | 81|, B2) coverage diagram for GTSP (1) and beta pdfs.
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2. THREE POINT ELICITATION
Matching...

*  Given a fixed support (a, b), chosen arbritrarily large, standardize lower
and upper quantile estimates x,, £, and most like value estimate 7) values to
values y,, ¥ and 0 in (0, 1) using transformation (x — a) /(b — a).

*  Utilizing that same linear transformation, the pdf (1) reduces to

( m—1
mn (%) , for0<y<¥b

fylm,n,0) = T 0ym 1 on - <

(3)

n—1
\(%) , forf <y <1.
0<fd<1l,n,m>0.

*  While the most likely value 0 is elicited directly, the quantile estimates y,, Y,
are needed to indirectly elicit the power-parameters 772 and 7 of the pdf
(3), hence the requirement 0 < y, < 6 < y, < 1.
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2. THREE POINT ELICITATION
Matching...

From pdf (3) one directly obtains the cumulative distribution function:

"

w(@,m,n)(%)m, for0<y<6

F(y|©) = « (4)

1 —[1— w<e,m,n)](1%g)", for 6 < y < 1,

\

with mode (ot anti-mode) probability Pr(X < 0) = w(0,m,n) =
On/[(1 — 0)m + On].

Given the quantile estimates ¥y, Y., the quantile constraints below need
to be solved to obtain the power-parameters m and 72 in (3), (4):

/

F(yy/6,m.n) = @,m,n) (%) =p, 5
Fyl0,m,m) = 1= [1—m@,m,n)) () =r.

\
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2. THREE POINT ELICITATION
Matching...

e Itis proven that the lower quantile constraint in (5) defines a unique
implicit function m’ = £(n), where £( - ) is a strictly increasing
continuous concave functioninn, such that £(n) | O asn | 0and
(m” = &(n), n) satisfies the first quantile constraint in (5) for all n. > 0.

* Asaresult, when n | 0the GTSP density f(y|&(n),n,0) converges to a
Bernoulli distribution with probability mass pat y = 0 and probability
mass 1 —paty = 1.

*  Finally, it is proven that the implicit function £(n) has the following tangent
lineatn =0:

60 1—p

where in addition for all values of n > 0, M (n|p,0) > &(n).

M(n|p,0) = n x
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2. THREE POINT ELICITATION
Matching...

« Itis proven that the upper quantile constraint in (5) defines a unique
implicit function n° = ((m), where (( - ) is a strictly increasing
continuous concave function in m, such that {(m) | 0 asm | 0and
(m,n’ = ((m)) satisfies the second quantile constraint in (5) for all m > 0.

* Asaresult, when m | 0 the GTSP density f(y|m,(m), @) converges to a
Bernoulli distribution with probability mass 7 at y = 0 and probability
mass 1 —raty = 1.

*  Finally, it is proven that the implicit function ((m) has the following tangent
line atm =0 :

1—46 r

RS (7)

N(m|r,0) =m X

whete for all values of m > 0, N (m|r,0) = ((m).
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2. THREE POINT ELICITATION
Numerical Algorithm...

*  From these conditions it follows that the quantile constraint set (7) has a
unique solution (m*, n*) where m*,n* > 0.

*  The unique solution m" = &(n) for a fixed value n > 0 may be solved
using, e.g., GoalSeek in Microsoft Excel. The unique solution n’ = {(m)
may be solved for a fixed value of 72 > 0 in a similar manner.

*  The following algorithm now solves for (™, n*) where m*, n* > 0.

Step 1: Set n” = ¢ > 0 (arbritrarily small).
Step 2: Calculate m’ = £(n") (satisfying first quantile constraint in (5)).
Step 3: Calculate n° = ((m”") (satisfying second quantile constraint in (5)).

Step 4: If

w(@,m’,n") <%> — p| < € Then Stop Else Goto Step 2.
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2. THREE POINT ELICITATION
Example...

y, =1/6,0 =4/15,y, =1/2, p=0.2,r=0.8 =
m* ~ 1.506 and n* ~ 2.839.

4.0 A

3.0 A

2.0 A /

PDF

0.0
0.0 1/6 4/15 0.5 1.0
—&(n) ---Ml(n,p,08) — L(m) —=-N(m,r,6) y

Figure 2. A: Implicit functions £(n) and {(m) and algorithm path for the example data above B: GTSP pdf solution (11).
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3. PRIOR DIRICHLET PROCESS
Construction...

«  Aim: Use elicited expert life time distributions F,(x),e = 1,..., E'to
specify the prior parameters of a Dirichlet Process. A Dirichlet process
(Ferguson, 1973) may be used to define a distribution for the cdf F'(x) for
every time x € (0,00) = R". Below a 5 step procedure is demonstrated.

*  Ferguson (1973) showed that for a D P with parameter measure a(A) > 0,
ACR" F(x) ~ Beta( a{(0,z)}, a{[z,c0)}). Thus with

a(R") = o{(0,z)} + af[r,00)}

ElF(@)la( )] = “L
_ a{(0,2)} x {a(®") ~ a{(0,2)}]
Y = ) Ple®) F 1y
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3. PRIOR DIRICHLET PROCESS

Construction...

1

E _
Step 1: Set Fy(x) = %) F.(x) = F () using an equal-weighted linear
e=1

opinion (see, e.g. Cooke, 1991) since in Bayesian context data, hopefully,
eventually outweighs the prior expert information.

Table 1. Illustrative example A: Suppott [0, 30] B: Support [0, 100]

A EXPERT 1 EXPERT 2 EXPERT 3 EXPERT 1 EXPERT 2 EXPERT 3

a 0 0 0 a 0 0 0

p 0.2 0.2 0.2 p 0.2 0.2 0.2

r 0.8 0.8 0.8 r 0.8 0.8 0.8

b 30 30 30 b 1 1 1
Xp 5 2 6 Yo 1/6 1/15 1/5

n 8 4 9 0 4/15 2/15 3/10
Xr 15 7 12 yr 1/2 7/30 2/5

m 1.504 1.269 2.328 m 1.504 1.269 2.328

n 2.838 7.733 5.755 n 2.838 7.733 5.755

B EXPERT 1 EXPERT 2 EXPERT 3 EXPERT 1 EXPERT 2 EXPERT 3

a 0 0 0 a 0 0 0

p 0.2 0.2 0.2 p 0.2 0.2 0.2

r 0.8 0.8 0.8 r 0.8 0.8 0.8

b 100 100 100 b 1 1 1

Xp 5 2 6 Vo 0.050 0.020 0.060
n 8 4 9 ) 0.080 0.040 0.090
Xr 15 7 12 yr 0.150 0.070 0.120
m 1.592 1.288 2.360 m 1.592 1.288 2.360
n 13.402 29.491 26.015 n 13.402 29.491 26.015
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3. PRIOR DIRICHLET PROCESS

Construction...

PDF
CDF

A X B

Figure 3. GTSP distribution for the expert data in Table 1. Expert 1's distribution in dark blue, Expert 2's distribution in green,

Expert 3's distribution in red, equi-weight mixture distribution in light blue.

*  Step 2: Fit Generalized Trapezoidal cdf F'(t|©) to F;(t) (although not
required for prior DP construction, but provides parametric convenience).
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3. PRIOR DIRICHLET PROCESS
Construction...

e The Generalized Trapezoidal cdf with support (a, d) is given by:

F(x]|0) =
( m
2a(b—a)ns T—a
20(m —a)n+(a+1)(n nl)mn—l—Q(b n9)m <771—a> > fora <x <m
20(b—a)ns+2(z b)nlng{ )(ch bb)x)}
e T sy [ T Gy T form < & <
2(d—c)n d—a \"
\ 1= 2a(771—a)n+(a+1)(ng—nll)mn—|—2(b—772)m (d—ng) , formy <x <b.

« Set(a,b) =(0,30), set 71 = 4 (the smallest elicited most likely estimate
in Table 1) and set 772 = 9 (the largest most likely estimate in Table 1).

* Solve for GT parameters c¢, 1 and 1 of the using a least squares procedure
between the equi-weight mixture cdf and the GT cdf, resultingin

a = 1.056, m = 1.390, n = 4.464.
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3. PRIOR DIRICHLET PROCESS

Construction...

PDF

0.1

0.1 M Nomes

014 /

'
0.1 1
0.1 1
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0.0 |

Ll
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-------

0.0

10.0
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gEe
>

10.0
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x  20.0 30.0
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Figure 4. Equi-weight mixture distribution (in light blue), GT fit to the mixture distribution (in light green). A: pdfs, B: cdfs.

Step 3: Encapsulate prior knowledge in the Dirichlet Process (DP) by setting:
a{(0,2)} = a(R*) x F(z|O).
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3. PRIOR DIRICHLET PROCESS

Construction...
*  This yields for the Dirichlet Process:
E[F(z)|a(-)] = F(x|©),ie the fitted GT cdf (8)
F(z[0) x {1 - F(z|®)}
la N = .
VIF(@)lo(-) LR

Observe that a(IR") is positive constant that drives the variance in F'(x).

Step 4: Evaluate z° that maximizes

VA (F@)] = 5 Y {F.(o) - Fl®), 9
« Step5: Solve a(R") from (9) by setting
VIF@)a( )] = VIF()), (10)
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3. PRIOR DIRICHLET PROCESS
Construction...

0.09
0.08 A
0.07 A
0.06 -

N

VI[F(x)] 0.05 -
0.04 -
0.03 -
0.02 A
0.01 -
OOO n T T T 1

0 5 10 15 20 25 30

X

Figure 5. Plot of 17[F (x)] given by (9) for the example datain Table 1.

2 = 6.513 with V[F(z")] = 0.0822 and F(2°|0©) = 0.439 = a(R") ~ 1.995.
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4. BAYESIAN UPDATING
Using Failure Data...

*  Failure Data: {nz,x} = {x(), ... %(,,)} a sample of ordered fail. times x;.

*  Ferguson (1973)'s main theorem provides the form of E[F'(x)|a( - ),
{n.,x}], i.e. the posterior expectation for the lifetime distribution F'()
given observed failure data {n,,z}.

* Ferguson (1973) demonstrated that

E[F(z)|a(- ), {n,, &}] = A, F(2]0) + (1 = Xy, ) Fo, (2/{n, 23),

where
\ - a(R")
T a(RY) 41y
Z?nz(az|{nx,§}) =~ for Ty <o < Tpy,t = 1,00, 0,
Ty

and zg) = 0, (y,41) = 00.
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4. BAYESIAN UPDATING
Using Failure Data...

+
a(R") ~ 1.995,n, =5, = A\, ~ 0.285 (11)
33(1) — 4, 33(2) — 10,33(3) — 11, 56(4) — 13, 27(5) — 15
100% -
90% -+ /
80% -+
70% +
60% +
LL
8 50% {
40% +
30% - —— GT Prior CDF
——— Empirical CDF
20% 1 — - = Posterior CDF
10% +o
0% s v
0 5 10 15 20 25 30

Figure 6. Comparison of prior GT cdf F'(z|®) , empirical cdf ﬁ'nz (z|{ns,x}) and posterior cdf
E[F(z)|a(-),{ns,x}] given failure data (11).
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4. BAYESIAN UPDATING
... and Maintenance Data

. Maintenance Data:
{ne, (1, 0)} = [{r,cands - {2 e )]

where {1}, ¢(;) } indicates that the component was removed from service y;

times at censor time c(;) to be preventively maintained.

* Join the failure data {n,, z} with maintenance data {n., (v, ¢c) }:

{n27 ((—Sag)} — {(617 Z(l))a re (6mz7 Z(mz))}a

My = Ny + Ne,y Ty :n:z‘FZ’}/Z,
=1
5. — { 17 Z(4) c {517(1), Cl?(nx)},
J Vi {’Y], Z(])} < [{’}/1, C(l)}7 e {’)/2, C(nc)}]

GGGGGGGGGG
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4. BAYESIAN UPDATING
.. and Maintenance Data

*  Susarla and Van Ryzin (1976) derived the following Bayes estimator for
the component survival functionwhen ¢y <t < ¢41),k = 0,...,ng,

cio) = 0, ¢n,41) = 00:

af{(x,00)} +n"(¢) Xﬁ o [cj),00) } + nlcy)

e == @t Uaieg, 001 +atey) -

where U = |« - ), (g, ), {n¢, (7, ¢)}] and (- ) is the parameter
0
measure of a Dirichlet process, by convention [[{ -} = 0,n,, 6,7,
j=1

= )  Gpandn(z)= > b

{2 >} {izz)> '}

defined as before, and finally

THE GEORGE

COST WORKSHOP JULY 2017 - TU DELFT J.R. van Dorp; dorpjr@gwu.edu - Page 26



4. BAYESIAN UPDATING
... and Maintenance Data

«  Settinga{(z,00)} = a(R") x S(z|O©)):

S@] ) = {AS(@]0) + (1 = \)Sn.[z]{n, (6, 2)}] | x

ﬁ a(R") x S(c;|0) + n(cy)
a(R*) x S(c;|0) + nlcy) —

_ a(RY) I,
>\nz o a(R*) _|_,nz75(33|@) =1 F( |®>7

S lolne, (6,20} = 2,

z

«  Example: {n., (v,¢)} =1{(4,3),(3,6),(2,9),(1,12)} = n. = 10,
a(R") &~ 1.995, Failure data (11) = n, =15 = A, = 0.117.
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4. BAYESIAN UPDATING

... and Maintenance Data

100% —
90% o
80% - ,
70% =
.
60% o I
L
8 50% - ,
|
40% +
30% —— GT Prior CDF
——— Empirical - FD Only
0 -
20% =« = Posterior - FD Only
10% + = = = Posterior - FD & MD
0% + r r r
15 X 20 25 30

Figure 7. Comparison of ptior GT cdf F'(z|©), empirical cdf ﬁ'nz (z|{nz,z}), postetior cdf E[F'(t)|cx( - ), {ns,x}] given
failure data (11) and postetior cdf F t|w)=1-— S (t| ¥) given failure data (11) and maintenance data.
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4. BAYESIAN UPDATING
... and Maintenance Data

*  Susarla and Van Ryzin (1976) assumed random observations Z; =
min(X;, C;), where the X; random failure times are ¢.i.d, and the C;'s are
random censoring times also independent from the X;'s.

* The C; random variables are assumed to be mutually independent, but do
not have to be identically distributed and could be degenerate implying
fixed maintenance times.

* In case of no censoring n, = n, gnz [z|{n., (8, 2) }] reduces to the
empirical survival function given failure data {n,, z}, and the product
term reduces to the value 1 since £ = 0 in the no censoring case. Hence,
the Susarla and Van Ryzin (1976) formula reduces to Ferguson (1973)'s.
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5. MAINTENANCE OPTIMIZATION
Block Replacement Model ...

* A basic model within the context of maintenance optimization is the

block replacement model. For an extensive discussion of this model see
Mazzuchi and Soyer (1996).

* In the block replacement model, a single maintenance activity is carried
out at a pre-specified age x of the component.

*  One obtains for the long term average cost per unit time:

. ICp-I-/Cf X A(x)

g(x) " :

where A(x) = the expected number of failures during the maintenance cycle
x, Kr are the expected failure cost and KCp, are the preventive
maintenance cost. As Ky is unplanned it is assumed that Iy > IC,,.
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5. MAINTENANCE OPTIMIZATION
Block Replacement Model ...

10

Long term average cost per unit Time

— - = Prior = — -Posterior—FD Only

15 20
Posterior — FD & MD

K¢ =20and K, = 2, i.c. a failure is ten times more costly than a preventative maintenance action.

COST WORKSHOP JULY 2017 - TU DELFT

THE GEQORGE
WASHINGTON

J.R. van Dorp; dorpjr@gwu.edu - Page 32 =55



OUTLINE

1. INTRODUCTION

2. THREE POINT ELICITATION

3. PRIOR DIRICHLET PROCESS CONSTRUCTION

4. BAYESIAN UPDATING USING FAILURE AND
MAINTENANCE DATA

5. MAINTENANCE OPTIMIZATION

6. SELECTED REFERENCES

COST WORKSHOP JULY 2017 - TU DELFT J.R. van Dorp; dorpjr@gwu.edu - Page 33



6. SELECTED REFERENCES

Ferguson TS (1973). A Bayesian Analysis of some nonparametric problems, Annals of Statistics,
Vol. 2, pp. 209-230.

Suzarla V and van Ryzin J (1976). Nonparametric Bayesian estimation of survival curves from
incomplete observations. Journal of the American Statistical Association, 71 (356), 897-902.

Cooke RM (1991). Experts in Uncertainty: Opinion and Subjective Probability in Science, New
York, Oxford University Press.

Dekker R (1996). Application of maintenance optimization models: a review and analysis.
Reliability Engineering and System Safety, 51, pp. 229-240.

Mazzuchi TA and Soyer R (1996). A Bayesian Perspective on Some Replacement Strategies.
Reliability Engineering and System Safety, 51, 295-303.

Van Dorp JR and S. Kotz (2003). Generalized Trapezoidal Distributions. Metrika, 58 (1), 85-97.

Herrerias-Velasco JM, Herrerias-Pleguezuelo R and Van Dorp JR (2009). The Generalized
Two-Sided Power Distribution, Journal of Applied Statistics, 36 (5), 573-587.

Morris DE, Oakley JE and JA Crowe (2014), A web-based tool for eliciting probability
distributions from experts. Environmental Modelling & Software, 52, 1-4.

THE GEORGE
WASHINGTON

COST WORKSHOP JULY 2017 - TU DELFT J.R. van Dorp; dorpjr@gwu.edu - Page 34 =




