

Cost Action IS1304

Expert Judgment Network: Bridging the Gap Between Scientific Uncertainty and Evidence-Based Decision Making

Workshop on "Science, uncertainty and decision making in the mitigation of natural risks"

ASSESSING VULNERABILITY AND FRAGILITY CURVES FOR VOLCANIC RISK

ITALY

prof. GIULIO ZUCCARO

PLINIVS Study Centre

for Hydrogeological, Volcanic and Seismic Engineering (Competence Centre for Italian Civil Protection) Interdepartmental Centre of Research Raffaele d'Ambrosio LUPT University of Naples Federico II

79dC. VESUVIUS, Italy

1944. VESUVIUS, Italy

2002. ETNA, Italy

1997. STROMBOLI, Italy

October 8-9-10, 2014

VOLCANIC RISK

1. VOLCANIC RISK

- 2. VULNERABILITY ELEMENTS and DAMAGE SCALE
- 3. VULNERABILITY ASSESSMENT METHODS
- 4. DPM
- 5. VULNERABILITY FUNCTIONS
- 5. VOLCANIC VULNERABILITY Earthquake Ash Fall Pyroclastic flows
- 6. MULTICRITERIA ANALYSES and VULNERABILITY

VOLCANIC RISK = HAZARD × EXPOSURE × VULNERABILITY

<u>HAZARD</u> = probability that, in a specific area, volcanic events occurs during a specific time.

EXPOSURE = extension, quantity and quality of different anthropic elements which characterize the examined area (population, buildings, facilities, etc.), whose conditions and/ or functioning can be damaged, altered or destroyed by volcanic events.

<u>VULNERABILITY</u> = probability that elements at risk (people, buildings, settlements) suffer injury, damage or other changes in the status quo following impacts from volcanic hazards.

In contrast to single catastrophic natural events (such as tectonic earthquakes, landslides, etc.), during a volcanic eruption, several phenomena may be generated (lava flows, earthquakes, ash fall, pyroclastic flows, ballistics, debris flows, tsunami and lahars) in different spatial areas and at different times. The sequence of these separate hazards in an eruption may modify the resistance of the exposed element at each stage and, in consequence, the vulnerability evaluation may require sequential analyses focusing on cumulative damage or changes.

VOLCANIC RISK

1. VOLCANIC RISK

- 2. VULNERABILITY ELEMENTS and DAMAGE SCALE
- 3. VULNERABILITY ASSESSMENT METHODS
- 4. DPM
- 5. VULNERABILITY FUNCTIONS
- 5. VOLCANIC VULNERABILITY Earthquake Ash Fall Pyroclastic flows
- 6. MULTICRITERIA ANALYSES and VULNERABILITY

FLOW CHART RELATING TO THE PROCESS TO ASSES THE CUMULATIVE DAMAGE FOR EACH POSSIBLE TIME-SPACE SEQUENCE OF EVENTS {X1, X2, ..., Xi, ..., Xn }

BUILDINGS

The attention is focused on the vulnerability analysis of buildings under effect of main volcanic phenomena: earthquake, ash fall and pyroclastic flows.

5/25	VULNERABILITY ELEMENTS and DAMAGE SCALE								
VOLCANIC RISK VULNERABILITY ELEMENTS and DAMAGE SCALE VULNERABILITY ASSESSMENT METHODS	Building vulnerability is the degree to which a system (entire building), subsystems (walls, frames, roofs, etc.), or system components (beams, columns, infill panels, windows, doors, etc.) are likely to experience damage due to exposure to hazards.								
DPM VULNERABILITY FUNCTIONS VOLCANIC VULNERABILITY Earthquake Ash Fall Pyroclastic flows MULTICRITERIA ANALYSES	Building vulnerability is a function of resistance and technological aspects of the elements that constitute it: •structural elements (such as walls, frames, floors, roofs, etc.) •non- structural elements (infill panels, windows, openings, etc.).								
and VULNERABILITY	(S: s	tructural eleme	ents; I: infill walls; O: op	penings – doors and windows -).					
	Dam	nage state	Damage description						
	DU	No damage Slight Damage	Absence of damage	Negligible demoge to structural elements					
	D1		5. I:	Negligible damage to infil papels					
	01		0.	Breakthrough of large or weak openings					
			S:	Moderate damage to structural elements					
	D2	Moderate	l:	Moderate damage to the infill panels in RC buildings					
		Damage	0:	Breakthrough of windows mildly resistant					
			S:	Severe damage to structural elements					
	D3	Heavy Damage	l:	Severe damage to infill panels in RC buildings. In few cases, total collapse of infill panels					
			0:	Breakthrough of strong windows					
	DA	Partial	S:	Partial of structural elements					
	04	Collapse	1:	Breakthrough of strong infill					
	D5	Collapse	0:	Total collapse of structural elements					

1. 2.

3.

4.

5.

5.

6.

100 F

- 1. VOLCANIC RISK
- 2. VULNERABILITY ELEMENTS and DAMAGE SCALE
- 3. VULNERABILITY ASSESSMENT METHODS
- 4. DPM
- 5. VULNERABILITY FUNCTIONS
- 5. VOLCANIC VULNERABILITY Earthquake Ash Fall Pyroclastic flows
- 6. MULTICRITERIA ANALYSES and VULNERABILITY

- **1. EMPIRICAL METHODS**: vulnerability assessment is based on damage observed during past events.
- 2. ANALYTICAL METHODS: vulnerability assessment is based on computational analyses.
- 3. HYBRID METHODS: vulnerability assessment is based on the combination of post- event damage statistics with simulated, analytical damage statistics from a mathematical model of the building typology under consideration.

DAMAGE PROBABILITY MATRICES (DPM) (discrete) VULNERABILITY FUNCTIONS (continuous)

TTS DAMAG condition i : P (D= Whitman probabili Whitman damaged the dam	 DAMAGE PROBABILITY MATRICES (DPM) express, in a discrete form, the conditional probability of obtaining a damage level Dj, due to intensity hazard i : P (D=j i) for a given class of buildings. Whitman et al. (1973) first proposed the use of damage probability matrices for the probabilistic prediction of damage to buildings from earthquakes. Whitman et al. (1973) compiled DPMs for various structural typologies according to the damaged sustained in over 1600 buildings after the 1971 San Fernando earthquake (that the damage ratio represents the ratio of cost of repair to cost of replacement). 								
	an at al (1072)								
SES Whitm		2)	[]						
ES Damage	Structural	Non-structural	Damage		Intensity	of Eartl	hquake		
ES Damage State	Structural Damage	Non-structural Damage	Damage Ratio (%)	V	Intensity VI	of Earth	hquake VIII	IX	
ES Damage State	Structural Damage None	Non-structural Damage None	Damage Ratio (%) 0-0.05	V 10.4	Intensity VI -	of Earth VII	hquake VIII -	IX	
ES Unitm Damage State 0 1	Structural Damage None None	Non-structural Damage None Minor	Damage Ratio (%) 0-0.05 0.05-0.3	V 10.4 16.4	VI - 0.5	of Earth	hquake VIII - -	IX -	
ES Damage State 0 1 2	Structural Damage None None None	Non-structural Damage None Minor Localised	Damage Ratio (%) 0-0.05 0.05-0.3 0.3-1.25	V 10.4 16.4 40.0	Intensity VI - 0.5 22.5	v of Earth	hquake VIII - - -	IX 	
S Whitm Damage State 0 1 2 3	Structural Damage None None None None None Not noticeable	Non-structural Damage None Minor Localised Widespread	Damage Ratio (%) 0-0.05 0.05-0.3 0.3-1.25 1.25-3.5	V 10.4 16.4 40.0 20.0	Intensity VI - 0.5 22.5 30.0	v of Earth	hquake VIII	IX	
ES Whitm Damage State 0 1 2 3 4	Structural Damage None	Non-structural Damage None Minor Localised Widespread Substantial	Damage Ratio (%) 0-0.05 0.05-0.3 0.3-1.25 1.25-3.5 3.5-4.5	V 10.4 16.4 40.0 20.0 13.2	VI - 0.5 22.5 30.0 47.1	v of Earth	hquake VIII - - - - 58.8	IX	
Damage State 0 1 2 3 4 5	Structural Damage None None None None Not noticeable Minor Substantial	Non-structural Damage None Minor Localised Widespread Substantial Extensive	Damage Ratio (%) 0-0.05 0.05-0.3 0.3-1.25 1.25-3.5 3.5-4.5 7.5-20	V 10.4 16.4 40.0 20.0 13.2	Intensity VI - 0.5 22.5 30.0 47.1 0.2	of Earth VII - 2.7 92.3 5.0	hquake VIII - - - - 58.8 41.2	IX - - - 14.7 83.0	
Damage State 0 1 2 3 4 5 6	Structural Damage None None Not noticeable Minor Substantial Major	Non-structural Damage None Minor Localised Widespread Substantial Extensive Nearly total	Damage Ratio (%) 0-0.05 0.05-0.3 0.3-1.25 1.25-3.5 3.5-4.5 7.5-20 20-65	V 10.4 16.4 40.0 20.0 13.2	Intensity VI - 0.5 22.5 30.0 47.1 0.2	v of Earth VII - 2.7 92.3 5.0	hquake VIII - - - 58.8 41.2 -	IX 	
Whitm Damage State 0 1 2 3 4 5 6 7	Structural Damage None None None None Not noticeable Minor Substantial Major Building	Non-structural Damage None Minor Localised Widespread Substantial Extensive Nearly total condemned	Damage Ratio (%) 0-0.05 0.05-0.3 0.3-1.25 1.25-3.5 3.5-4.5 7.5-20 20-65 100	V 10.4 16.4 40.0 20.0 13.2 - -	Intensity VI - 0.5 22.5 30.0 47.1 0.2 - -	v of Earth vII - - 2.7 92.3 5.0 -	hquake VIII - - - 58.8 41.2 - -	IX 	

2.

C ED CAR

8/25	DAMAGE	PROBA	ABILITY	MATRIC	CES		P.LIN.I.V	.s. 🛞 🖓
VOLCANIC RISK VULNERABILITY ELEMENTS and DAMAGE SCALE VULNERABILITY ASSESSMENT METHODS	DAMAGE P conditional i : P (D=j	ROBABI probabi i) for a g	LITY MAT ility of ob given clas	RICES (DP taining a s of build	M) expre damage k ings.	ss, in a dis evel Dj , d	screte form due to inte	n, the nsity hazard
DPM VULNERABILITY FUNCTIONS VOLCANIC VULNERABILITY	DPM after Building of	Irpinia e f CLASS A	earthquak A (weak m	te (Braga, Do nasonry)	olce, Liberati	ore 1980)		
Earthquake	_			Dam	age Level			
Ash Fall Pyroclastic flows	Intensity	0	1	2	3	4	5	
ryiociastic nows	VI	0,188	0,373	0,296	0,117	0,023	0,002	
MULTICRITERIA ANALYSES	VII	0,064	0,234	0,344	0,252	0,092	0,014	
and VULNERABILITY	VIII	0,002	0,020	0,108	0,287	0,381	0,202	
	IX	0,0	0,001	0,017	0,111	0,372	0,498	
	Х	0,0	0,0	0,002	0,030	0,234	0,734	
	V _{khi} =	$= \frac{k}{k}$	omial co $5!$ $(5 - k$ evel of da	efficient $\frac{1}{2} \cdot (t)$	$\frac{2}{hi}^{k}$ (1	- p _h	$(i^{i})^{5-k}$	

1. 2.

3.

4

5.

5

6.

9/25	V
VOLCANIC RISK VULNERABILITY ELEMENTS and DAMAGE SCALE VULNERABILITY ASSESSMENT METHODS DPM	N N H
VULNERABILITY	

5. VOLCANIC VULNERABILITY Earthquake Ash Fall Pyroclastic flows F

FUNCTIONS

3

4

6. MULTICRITERIA ANALYSES and VULNERABILITY

VULNERABILITY FUNCTIONS express the probability that a given 'building vulnerability class' (with similar behaviour with respect to the individual volcanic phenomenon) exceeds a certain level of damage (Di), given a level of hazard magnitude v.

$$(v) = \int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} \frac{1}{\nu} \exp\left[-\frac{1}{2\sigma^2}(\ln\nu - \mu)^2\right] d\nu.$$

v = hazard magnitude; F(v) = log-normal cumulative distribution

- 1. VOLCANIC RISK
- 2. VULNERABILITY ELEMENTS and DAMAGE SCALE
- 3. VULNERABILITY ASSESSMENT METHODS
- 4. DPM
- 5. VULNERABILITY FUNCTIONS
- 5. VOLCANIC VULNERABILITY Earthquake Ash Fall Pyroclastic flows
- 6. MULTICRITERIA ANALYSES and VULNERABILITY

2002.Santa Venerina, ITALY
Magnitudo: 4.4

1. VOLCANIC RISK

2. VULNERABILITY ELEMENTS and DAMAGE SCALE

3. VULNERABILITY ASSESSMENT METHODS

- 4. DPM
- 5. VULNERABILITY FUNCTIONS
- 5. VOLCANIC VULNERABILITY Earthquake Ash Fall Pyroclastic flows
- 6. MULTICRITERIA ANALYSES and VULNERABILITY

2002. Santa Venerina, ITALY

EARTHQUAKE VULNERABILITY CLASSES

	HORIZONTAL STRUCTURES								
	Poor stiffness	Poor technology	Medium stiffness	Medium high stiffness	High stiffness				
VERTICAL STRUCTURES	Metal sheet, vaults and/or wooden floor (without ties)	(e.g. "SAP" floor*)	Vaults and/or wooden floor (without ties)	Iron beam floor	Reinforced concrete and steel floors				
Weak masonry		A.	A.	A.,	As				
Rubble masonry neglected	AS	AS	AS	AS					
Medium quality			0.	0.	0.0				
Rubble masonry maintained	AS	AS	85	BS	BS				
Good masonry			0.		~				
Squared masonry	AS	AS	BS	BS	LS .				
Framed structures (RC or steel)		Bs	+	1000	Ds				
* CAD floor (self supporting floor)	is a tunical Italian hasizontal	structure made of elau	coment mix with smooth	have at intrador. This to	choology is considered				

* SAP floor (self- supporting floor) is a typical Italian horizontal structure, made of clay/cement mix with smooth bars at intrados. This technology is considered very dangerous because of the cement casting superior slab does not cover the reinforcement bars inserted in the hollow tile.

VULNERABILITY CURVES

For the Vesuvian area, the seismic vulnerability curves have been assessed through an **empirical approach** founded on numerous in situ damage distribution surveys (about 170,000 buildings) related to past seismic events (Zuccaro 2004; Zuccaro et al. 2008).

- 1. VOLCANIC RISK
- 2. VULNERABILITY ELEMENTS and DAMAGE SCALE
- 3. VULNERABILITY ASSESSMENT METHODS
- 4. DPM
- 5. VULNERABILITY FUNCTIONS
- 5. VOLCANIC VULNERABILITY Earthquake Ash Fall Pyroclastic flows
- 6. MULTICRITERIA ANALYSES and VULNERABILITY

1994. Rabaul, Papua New Guinea

ASH FALL

Giulio ZUCCARO (zuccaro@unina.it)

- 1. VOLCANIC RISK
- 2. VULNERABILITY ELEMENTS and DAMAGE SCALE
- 3. VULNERABILITY ASSESSMENT METHODS
- 4. DPM
- 5. VULNERABILITY FUNCTIONS
- 5. VOLCANIC VULNERABILITY Earthquake Ash Fall Pyroclastic flows
- 6. MULTICRITERIA ANALYSES and VULNERABILITY

1991. Pinatubo, Filippine

ASH FALL

VUL	VERABILITY CLASSES					
Туре	Description					
Ar	Weak pitched wooden roof					
Br	Flat standard wooden roof					
	Reinforced concrete flat roof- SAP type					
	Weak steel flat roof					
C1 -	Old flat RC roof					
CIF	Weak pitched steel roof					
C 2+	Recent flat RC roof					
C2r	Recent flat steel roof					
2	Recent pitched RC roof					
Dr	Recent pitched steel roof					

FRAGILTY CURVES D4-D5 collapse probability 0.9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 10 15 20 25 AF vertical load (kPa) Ar ---- Br ---- C1r ---- C2r ---- Dr

For each vulnerability class in the Vesuvian area, ash fall fragility curves have been calculated through a hybrid method characterized by the following steps:

1.A robust data set was collected by survey in the study-area (about 19,000 roofs). It was elaborated statistically with the aim to assess the statistical distribution of roof typologies (main structures, materials, slopes, dimensions, etc.) in the Vesuvian area.

2.A representative sample of roof typologies was generated on the basis of their main characteristics (main structures, materials, slopes, dimensions, etc.). It was developed using a Monte Carlo simulation, in accordance with the statistical information obtained by the data set of Step 1.

3. The collapse load of each roof generated by the Monte Carlo simulation was determined and compared with experimental tests developed on different typologies of roofs located in the Vesuvian area (Spence et al. 2005).

4.The vulnerability curves were obtained as log- normal cumulative distributions of collapse load calculated in the step 3 (Spence et al. 2005; Zuccaro et al., 2008).

- 1. VOLCANIC RISK
- 2. VULNERABILITY ELEMENTS and DAMAGE SCALE
- 3. VULNERABILITY ASSESSMENT METHODS
- 4. DPM
- 5. VULNERABILITY FUNCTIONS
- 5. VOLCANIC VULNERABILITY Earthquake Ash Fall Pyroclastic flows
- 6. MULTICRITERIA ANALYSES and VULNERABILITY

Montserrat Lesson

Giulio ZUCCARO (zuccaro@unina.it)

- 1. VOLCANIC RISK
- 2. VULNERABILITY ELEMENTS and DAMAGE SCALE
- 3. VULNERABILITY ASSESSMENT METHODS
- 4. DPM
- 5. VULNERABILITY FUNCTIONS
- 5. VOLCANIC VULNERABILITY Earthquake Ash Fall Pyroclastic flows
- 6. MULTICRITERIA ANALYSES and VULNERABILITY

Montserrat Lesson

Center of flow: complete devastation

Giulio ZUCCARO (zuccaro@unina.it)

18/25

- 1. VOLCANIC RISK
- 2. VULNERABILITY ELEMENTS and DAMAGE SCALE
- 3. VULNERABILITY ASSESSMENT METHODS
- 4. DPM
- 5. VULNERABILITY FUNCTIONS
- 5. VOLCANIC VULNERABILITY Earthquake Ash Fall Pyroclastic flows
- 6. MULTICRITERIA ANALYSES and VULNERABILITY

Montserrat Lesson

Along the edges of the flow

19/25
VOLCANIC RISK
VULNERABILITY ELEMENTS

4. DPM

1.

2.

- 5. VULNERABILITY FUNCTIONS
- 5. VOLCANIC VULNERABILITY Earthquake Ash Fall Pyroclastic flows
- 6. MULTICRITERIA ANALYSES and VULNERABILITY

Giulio ZUCCARO (zuccaro@unina.it)

Montserrat Lesson

More than 5km from the crater: vulnerability factors.

Openings

Infill panels

Roofs

Orographic shielding

۷.	VULNERABILITY EL and DAMAGE SCAL	EMI .E
3.	VULNERABILITY ASSESSMENT MET	ног
4.	DPM	
5.	VULNERABILITY FUNCTIONS	
5.	VOLCANIC VULNEI Earthquake Ash Fall	RAB
	Pyroclastic flows	
6.	MULTICRITERIA AN and VULNERABILIT	IALY Y
	And	le S Bay
Moni 31	Soldior Bay Stards Bay Stards Bay Stards Bay Stards	le Bey le Rock
Mont 31 00 Wood	Soldier Sol	le la Bay ue Rock
Mont 31 00 Wood Old Read Old Read Old Read	Andervous Bay Carr's B	le la Bey ut Rock
Monti 31 Oh Wood Bitti Ole Acad Bay Mess Bay Pogs J	Sectors Start Star	ie Is Bay Is Rock
Monti 31 On Wood Ole Read Built Ole Read Built B	Soldier Bry Corr's Bay Ster Hill Soldier Bry Corr's Bay Corr's Bay Ster Hill Soldier Bry Corr's Bay Ster Hill Soldier Bry Corr's Hay Ster Hill Soldier Bry Corr, Hill Soldier Bry Corr, Hill Soldier Bry Corr, Hill Soldier Corr, Soldier Corr, Hill Soldier Corr, Soldier Corr, Soldier C	io is Bay is Rock
Monii 31 01 Wood Oli Read Blatt Oli Read Blatt Oli Read Blatt Oli Read Blatt B	Science of the service of the servic	ie la Bay ue Rock
Monti 31 00 Wood Old Read Bay Illes Ray Bay Bransby Pers Bay Pers Bay Pers Bay Pers Bay Pers Bay Pers	Soldier Bei Corr's Boy Corr's Boy	ie is Bay is Rock
Monti 31 On Wood Old Read But Ness But But But But But But But But But But	Soldier Corr's Bay Corr's Bay Corry Cor	io la Bay ue Rock
Monii 31 00 Woodl Oli Reed Built Ole Reed Built State Built Ole Reed Built Ole Re	Schlor Anderwals Bay Schlor Bed Boy Bed Corr's Bay Corr's B	ie Bay us Rock

Montserrat Lesson

- ANOTHER FACTOR CONDITIONING:
- Barrier of built environment

20/25

1. VOLCANIC RISK

- ILITY
- YSES

Giulio ZUCCARO (zuccaro@unina.it)

- 1. VOLCANIC RISK
- 2. VULNERABILITY ELEMENTS and DAMAGE SCALE
- 3. VULNERABILITY ASSESSMENT METHODS
- 4. DPM
- 5. VULNERABILITY FUNCTIONS
- 5. VOLCANIC VULNERABILITY Earthquake Ash Fall Pyroclastic flows
- 6. MULTICRITERIA ANALYSES and VULNERABILITY

1991. Pinatubo, Filippine

2002. Soufr. Hills, Montserrat, UK

PYROCLASTIC FLOWS (structural elements)

VULNERABILITY CLASSES

STRU	JCTURAL ELEMENTS
Ту ре	Description
	Weak masonry buildings of 3-4 storeys with deformable floor
Ар	Weak or strong masonry buildings with more than 4 storeys
0.0	Medium masonry buildings of 1-2 storeys with deformable floor
вр	Strong masonry buildings of 3 or more storeys with rigid floor
Ср	Strong masonry buildings of 1-2 storeys with rigid floor
Dp	Non- aseismic RC buildings of more than 6 storeys (high)
Ep	Non- aseismic RC buildings of 4-6 storeys (medium)
Fp	Non- aseismic RC buildings of 1-3 storeys (low)
Fc Fp	or each structural class Ap- o, vulnerability functions
	al 2008) As for the ash
et	al., 2006). AS for the ash
fa	ll case, they have been
de	etermined through a hybrid
m	ethod based on typological

analysis of about 90,000 buildings surveyed in the Vesuvian area (Spence et al. 2004a, b; Zuccaro et al. 2008)

VULNERABILITY CURVES

15/25	VOLCA	NIC VULNERABILITY: Campania Region ex	perience <u>Centro Studi</u> P.LIN.I.V.S.
 VOLCANIC RISK VULNERABILITY ELEMENTS and DAMAGE SCALE VULNERABILITY ASSESSMENT METHODS 	PYRO (not s VULNER	CLASTIC FLOWS tructural elements) ABILITY CLASSES and COLLAPSE LOAD	
4. DPINI	NOT ST	RUCTURAL ELEMENTS	
5. VULNERABILITY	Type	Description	COLLAPSE LOAD[kPa]
5. VOLCANIC VULNERABILITY	Ap*	Windows glass of ordinary buildings	<1,5
Earthquake	Bp*	Aluminium window in bad condition	1,5
Ash Fall Pyroclastic flows	Cp*	Aluminium window in good condition	3,0
6. MULTICRITERIA ANALYSES	Dp*	Old wooden door	3,5
and VULNERABILITY	Ep*	Yellow tuff masonry wall	4,2-7,4
	Fp*	Old wooden window	5,0
	Gp*	Terra cotta tile in-fill panel without window	5,5
	Hp*	Terra cotta tile in-fill panel with window	7,6-8,9
1991. Pinatubo, Filippine	For noi but the out in s et al. 20	n-structural classes A*p– F*p, the vulnerability e collapse load R has been determined thanks situ on typical windows, doors and infill panels 204b) and damage studies in the Montserrat eru	curves are not yet available, to experimental tests carried of the Vesuvian area (Spence ption (Baxter et al., 2005).

2002. Soufr. Hills, Montserrat, UK

21/25	M	ULTICRITE	RIA ANA	LYSES ar	nd VUL	NERABIL	ΙΤΥ	Centro Studi P.LIN.I.V.S		L .
VOLCANIC RISK VULNERABILITY ELEMENTS and DAMAGE SCALE VULNERABILITY ASSESSMENT METHODS DPM VULNERABILITY FUNCTIONS VOLCANIC VULNERABILITY Earthquake Ash Fall Pyroclastic flows		Building vuln The methode value betwee whole geogra method to co the expected The vulnerat able to influe The Criteria AND ASH FA	erability is ology illust en zero and aphical area ompare typ I response t pility judgm ence the vo are VULNI LL.	strongly lin trated here d one) to be a and for giv pologies of to several h ent is based lcanic vulne ERABILITY	ked to th propose e used to ven hazar buildings azards. d on the erability o CLASSES For two	e vulnerab es a 'global o define bu rd severity in various analysis of of buildings FOR EARF	ility typolog ' volcanic vi ilding vulne levels. The a geographic <i>n</i> criteria <i>C</i> RTHQUAKE, given volcar	rical classes. ulnerability rability 'att aim is to sup al areas diff chosen as PYROCLAS nic eruption	index (as a itude' for a oply a quick ferentiating an element TIC FLOWS s	
				/						
and VIII NERABILITY		CRITE	RIA	MED		I (M)		SMALL ERUPTION (S)	
			As	1=8 (EIVIS'98)	р=6кРа -		0.006	р=2кРа	q=зкра _	
		SEIGM	Bs	0,018	-	-	0,001	-	-	
Duckabilty [0,4] for		SLISIVI	Ce	6,003	-	-	0,000	-	-	
Probability [0-1] for			Ds An	0,001	- 0.879	-	0,000	- 0.000	-	
each criterion that the			Вр	-	0,080	-	-	0,000	-	
damage <i>D</i> exceeds the			Ср	-	0,016	-	-	0,000	-	
damage <i>D5</i> for two			Dp	-	1,000	-	-	0,001	-	
given eruptions.			Fp	-	0,570	-	-	0,001	-	
nedium M and small S		PYROCLASTIC	Ap*	-	1,000	-	-	1,000	-	
characterized by		FLOWS	Bp*	-	1,000	-	-	1,000	-	
characterized by			Cp≁ Dn*	-	1,000	-	-	0,000	-	
assigned level of			Ep*	-	1,000	-	-	0,000	-	
seismic intensity I,			Fp*	-	1,000	-	-	0,000	-	
vertical ash fall load q			Gp*	-	1,000	-	-	0,000	-	
and horizontal			Ar	-	-	1,000	-		0,920	
nyroclastic pressure p			Br	-	-	1,000	-	-	0,500	
(documod by		ASH FALL	C1r	-	-	1,000	-	-	0,050	
(desumed by			C2r Dr	-	-	0.850	-	-	0,000	
vulnerability curves)				-	-	0,000	-	-	0,000	

2.

3.

4.

5.

5.

6.

O'DETA-

22/25	MULTICRITERIA ANALYSES and VULNERABILITY
 VOLCANIC RISK VULNERABILITY ELEMENTS and DAMAGE SCALE VULNERABILITY ASSESSMENT METHODS DPM VULNERABILITY FUNCTIONS VOLCANIC VULNERABILITY 	The weights calculation has been carried out on the basis of binary comparisons <i>a</i> ij between criteria <i>C</i> i e <i>C</i> j organized in the so called <i>weights matrix</i> \mathbf{A}_{rm} . In particular, fixed beforehand the level of the three hazards <i>H</i> considered (macroseismic intensity vertical ash fall load , horizontal pyroclastic pressure), the generic element <i>a</i> ij is calculated as in the following ratio. $a_{ij} = \frac{\Pr{cj} (D \ge D5 H = (I \text{ or } q \text{ or } p))}{\Pr{ci} (D \ge D5 H = (I \text{ or } q \text{ or } p))} Pci (D \ge D5 H = (I \text{ or } q \text{ or } p))$ The weights <i>w</i> j assigned to each criterion <i>C</i> j are calculated by dividing the geometric mean <i>Mg</i> _i of each criterion for the sum of the geometric means of the criteria
Earthquake Ash Fall Pyroclastic flows	$wj = \frac{Mg_i}{\sum_{i=1}^n Mg_i} = \frac{(a1j \cdot \dots \cdot anj)^{\frac{1}{n}}}{\sum_{i=1}^n Mg_i}$
and VULNERABILITY	WEIGHTS 100 90 80 70 wj [%] 80 70
 Saaty, T.L., 1980. The Analytic Hierarchy Process, New York, McGraw Hill. 	
 Hwang, C. L. and Yoon, K., 1981. Multiple Attribute Decision Making Methods and 	As Bs Cs Ds Ap Bp Cp Dp Ep Ap Bp Cp Dp Ep Ap Bp* Cp* Dp* Ep* Fp* Gp* Hp* Ar Br C1r C2r Dr Image: M(EQ+PF+AF) 0,7 0,1 0,0 0,0 5,7 0,5 0,1 6,4<
Applications. Berlin, Heidelberg, New York: Springer Verlag	EARTHQUAKE PYROCLASTIC FLOWS ASH FALL

Giulio ZUCCARO (zuccaro@unina.it)

- 1. VOLCANIC RISK
- 2. VULNERABILITY ELEMENTS and DAMAGE SCALE
- 3. VULNERABILITY ASSESSMENT METHODS
- 4. DPM
- 5. VULNERABILITY FUNCTIONS
- 5. VOLCANIC VULNERABILITY Earthquake Ash Fall Pyroclastic flows
- 6. MULTICRITERIA ANALYSES and VULNERABILITY
- Saaty, T.L., 1980. The Analytic Hierarchy Process, New York, McGraw Hill.
- Hwang, C. L. and Yoon, K., 1981.
 Multiple Attribute
 Decision Making
 Methods and
 Applications. Berlin,
 Heidelberg, New York:
 Springer Verlag

Multicriteria method has been applied to compare 4 locations Ai: Old Herculaneum, Herculaneum 2013, Arequipa, Santorini.

Old Herculane<u>um</u>

Modern Herculaneum

Arequipa (Peru)

Santorini (Greece)

	24/25	MULTICRITERIA ANALYSES and VULNERABILITY
1. 2. 3.	VOLCANIC RISK VULNERABILITY ELEMENTS and DAMAGE SCALE VULNERABILITY ASSESSMENT METHODS	The measures dij of the criterion Cj with respect to the alternative i are collected in the decision matrix D_{mxn} (n= number of criteria; m= number of towns), whose generic terms (d _{ij}) are the percentage distribution of criterion Cj (vulnerability class) in the alternative i (town).
4. 5.	DPM VULNERABILITY FUNCTIONS	Subsequently, the matrix terms should be normalised and combined with the criteria weights, obtaining the new matrix V_{mxn} , whose generic terms are achieved as it follows :
5.	VOLCANIC VULNERABILITY Earthquake Ash Fall Pyroclastic flows	$V_{i,j} = \frac{W_j \cdot d_{i,j}}{\sqrt{\sum_{i=1}^n d_{i,j}^2}}$
6.	MULTICRITERIA ANALYSES and VULNERABILITY	Applying the Topsis method (Technique for Order Preference by Similarity to Ideal Solution) for each town a VULNERABILITY INDEX (0-1) can be calculated.
	Saaty, T.L., 1980. The Analytic Hierarchy Process, New York, McGraw Hill.	The real alternatives are characterised by the rows of the decision matrix normalised and weighted (V), each one is represented by the following row-vector.
	Hwang, C. L. and Yoon, K., 1981. Multiple Attribute	$A_i = \{v_{i1}, v_{i2}, \dots, v_{in}\}$
	Decision Making Methods and Applications. Berlin, Heidelberg, New York: Springer Verlag	we find 2 virtual extreme optimal solution $A^+ = \{\max v_{ij}, j = 1, 2,, n\} = \{v_1^+, v_2^+,, v_n^+\}$ $A^- = \{\min v_{ij}, j = 1, 2,, n\} = \{v_1^-, v_2^-,, v_n^-\}$

1. VOLCANIC RISK

- 2. VULNERABILITY ELEMENTS and DAMAGE SCALE
- 3. VULNERABILITY ASSESSMENT METHODS
- 4. DPM
- 5. VULNERABILITY FUNCTIONS
- 5. VOLCANIC VULNERABILITY Earthquake Ash Fall Pyroclastic flows
- 6. MULTICRITERIA ANALYSES and VULNERABILITY
- Saaty, T.L., 1980. The Analytic Hierarchy Process, New York, McGraw Hill.
- Hwang, C. L. and Yoon, K., 1981.
 Multiple Attribute
 Decision Making
 Methods and
 Applications. Berlin,
 Heidelberg, New York:
 Springer Verlag

the Euclidean distances between the real alternative A_i and the ideal ones can be calculated as it follows.

$$S_{i}^{+} = |A_{i} - A^{+}| = \sqrt{\sum_{j=1}^{n} (v_{ij} - v_{j}^{+})^{2}}$$
$$= |A_{i} - A^{-}| = \sqrt{\sum_{j=1}^{n} (v_{ij} - v_{j}^{-})^{2}}$$

So as the vulnerability index is expressed through the following relationship.

 S_i^-

VOLCANIC PHENOMENA

This methodology may also be applied by taking individual buildings as alternatives to compare. In this case, the measures d_{ij} of the criterion C_{j} with respect to the alternative i can be 1 or 0 when for the i-th building the criterion C_{j} is present or absent, respectively.

Vesuvius, Andy Warhol. 1985

THANKS FOR YOUR ATTENTION.