Shrinidhi Lakshmikanth, David Budescu, Barbara Mellers and Phil Tetlock GOOD JUDGMENT PROJECT AND THE CONTRIBUTION WEIGHTED MODEL

Eva Chen

0

Ga P

Harnessing the wisdom of the crowd to forecast world events

- IARPA created the ACE Program to dramatically enhance the accuracy, precision, and timeliness of intelligence forecasts
- Development of advanced techniques that elicit, weight, and combine judgments
- Five university-based teams enter the 2011-2015 tournament (GJP eliminated the other 4 teams after the second year)
- Each team submitted forecasts each day for each question, using methods of its choice
- IARPA has posed over 500 questions for the last 4 years:

Wisdom of the crowd

Collective intelligence

- Average responses
- Diminish individual errors
- Knowledgeable and diverse
- Better than or equal to:
 - Average individual
 - Randomly selected individual

Sir Francis Galton's ox

Aggregation of judgment

- Methods for aggregation
 - **Behavioral** (e.g., jury and committee)
 - Markets (e.g., prediction markets)
 - Mathematical
 - Bayesian models
 - Weighting models
- Bases for weights
 - Past performance
 - Test performance (Cooke)

Identifying experts

Contribution:

GJ

- Measure the expertise that the judge brings to the group.
- Aggregation of judge's impact on the group performance (Score) across all items (i).

Contribution: 10 - 9 = 1

The Aggregation Model

Group's aggregate forecast: $P_{Git} = A(P_{jit})$ Aggregation function Forecast of judge (j) for event (i) at time (t)

Re-calculate the group's forecast, excluding j: $P_{(G-j)it}$

Merit score of the group : $S_{Git} = f(P_{Git})$ Merit function (e.g. Brier score)

Judge's contribution to the group item i at time t: $C_{jit} = S_{Git} - S_{(G-j)it}$

Judge's average contribution : $C_{jt} = \sum C_{ijt} / I_j$ All I_j items j answers at t

 $C_{jt,}$

- reflect the relative expertise of the various judges in the context of the group
- can be positive, negative or 0
- can vary over time as more items are being forecasted

Contribution Weighted Model

- Budescu and Chen (2015) proposed using a weighted aggregate of all positive contributors.
 - w_{it} , are scaled such that all $w_{it} \ge 0$, and $\sum w_{it} = 1$.
 - $P_{Gi(t+1)} = A(w_{jt}, P_{ji(t+1)})$ for item i at time (t+1)
- CWM model:
 - weights are proportional to the contribution scores
 - only judges with positive contributions are used.

•
$$w_{jt} = 0$$
 if $C_{jt} \le 0$, and $w_{jt} = (C_{jt} / \Sigma C_{jt})$ if $C_{jt} > 0$.

Study I: Geo-political forecasting tournament

- Binary
- Ordered multinomial
- Unordered multinomial
- Conditional

GJ

P

#1417 Will Kim Jong Un meet a *head of state from one of the G7 countries, South Korea, China, or Russia **before 1 June 2015?

Opened on 08/27/14, Scheduled to close on 05/30/15 - 90 days Your last forecast **None**

Experimental design

• Expertise (training & teaming)

Period I	No Training	Training
Individual	Ind-NT (157)	Ind-T (148)
Team	Team-NT (123)	Team-T (96)

Facilitation (professional coaches)

Period 2	No Training	Training	Facilitation
Individual	Ind-NT (116)	Ind-T (105)	
Team		Team-NF (126)	Team-F (80)

Data collection

- Data from Jun'12-Jun'13 and from Jun'13-Jun'14
- Collect forecasts from voluntary judges.
- Items from international business, economy, military, policy, politics, etc.
- Judges answer items based on their interest (about 20% of items). We use those who answered ≥ 20 items
- Score (0-100), where 75 score = 0.5 probability

CWM compare to alternative models

Models	Description
UWM	Unweighted mean of judges with 20 or more items
BWM	Weighted mean based on past Scores of judges who answered at least 20 items

CWM beats all models in Period I

	Conditions			
	Independents		Teams	
	(Ind-NT)	(Ind-T)	(Team-NT)	(Team-T)
Mean Score of CWM	94.08	96.64	95.20	97.23
Mean Score of UWM	87.98	90.61	90.77	93.12
Mean Score of BWM	90.69	92.84	93.40	95.20
Proportion of relative improvement* (PRI) of				
CWM over UWM (in%)	50.72	64.23	48.01	50.82`
Proportion of items when CWM > UWM (in%)	96.43	98.21	91.07	96.42
PRI of CWM over BWM (in%)	36.38	53.13	27.25	42.45
Proportion of items when CWM > BWM (in%)	92.86	96.43	89.28	81.07

CWM beats all models in Period 2

	Conditions			
	Independents		Tean	18
	No training Training		No facilitation	Facilitation
	(Ind-NT)	(Ind-T)	(Team-NF)	(Team-F)
Mean Score of CWM	93.67	93.33	95.77	95.67
Mean Score of UWM	89.82	90.67	95.30	95.13
Mean Score of BWM	91.83	92.38	95.67	95.09
PRI of CWM over UWM (in%)	37.84	28.51	10.00	11.02
Proportion of events when CWM >				
UWM (in%)	90.70	84.88	75.58	87.21
PRI of CWM over BWM (in%)	22.55	12.42	2.18	11.77
Proportion of events when CWM >				
BWM (in%)	81.40	74.41	67.44	70.93

Effect of facilitation

Discrimination

Effect of time

Robustness: Dishonest forecasters

Cost benefit analysis

Cost function= Items (I) * Judges(J) * Cost (C)

- Experts are costly (subset J, w, where 0 < w < 1)
- Training questions require time (subset I, p, where 0

→ Maintain accuracy level

Two scenarios (Ind-T from Period 2, to predict 36 items): 1. Reduce cost by eliminating less contributing judges

2. Reduce cost by randomly eliminating judges

Reduce Cost function = (p + (1-p)w) I J C

Cost benefit analysis with top contributors

CWM: Top 20 contributors 25 practice questions 57% saving => 95.29 Score

CWM vs. BWM: PRI: 27.22% better than BWM SD_{cwm}: 0.59 SD_{bwm}: 0.91

Cost benefit analysis with random forecasters

Summary of contribution

- Measure of contribution is simple, reliable and useful for assessing forecaster's performance.
- CWM is a better weighting tool in the aggregation process than those built solely on past, individual performance (BWM).
- => weighting people who have knowledge against the crowd
- CWM works best when there is expertise in the crowd: training or teaming
- CWM is robust (time, length of items and dishonest forecasters).
- CWM can reduce the cost of expert judgment.

www.goodjudgmentproject.com

Budescu, D.V. & Chen, E. (2015). Identifying expertise to extract the Wisdom of Crowds. *Management Science*, 61(2), 267-280.

This work was supported, in part, by the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior National Business Center.