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Statistical aggregation is often used to combine multiple opinions within a group. Such aggregates outperform
individuals, including experts, in various prediction and estimation tasks. This result is attributed to the

“wisdom of crowds.” We seek to improve the quality of such aggregates by eliminating poorly performing
individuals from the crowd. We propose a new measure of contribution to assess the judges’ performance relative
to the group and use positive contributors to build a weighting model for aggregating forecasts. In Study 1,
we analyze 1,233 judges forecasting almost 200 current events to illustrate the superiority of our model over
unweighted models and models weighted by measures of absolute performance. In Study 2, we replicate our
findings by using economic forecasts from the European Central Bank and show how the method can be used
to identify smaller crowds of the top positive contributors. We show that the model derives its power from
identifying experts who consistently outperform the crowd.
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1. Introduction
Nostradamus looked to the stars to foretell disasters,
Gallup surveys the populace to model future election
outcomes, and sports commentators examine athletes’
past performances to predict scores of future games
(statistically and otherwise). Whether the discussion
centers on the art or the science of forecasting, decades
of research have focused on the quality of predictive
judgments in various domains such as economics,
finance, sports, and popular culture (e.g., Armstrong
2001, Clemen and Winkler 1999, Surowiecki 2004). The
literature suggests that individual forecasts are riddled
with biases, such as being systematically too extreme
or overconfident about reported probabilities, overly
anchored on an initial estimate, biased toward the most
emotionally available information, neglectful of the
event’s base rate, etc. (Bettman et al. 1998, Gilovich
et al. 2002). A natural remedy is to seek experts in the
relevant domains, hoping that they would be less likely
to succumb to such biases. Unfortunately, expertise is
ill-defined and not always easy to identify. Although
experts in some domains (e.g., short-term precipita-
tion forecasts) are highly accurate (e.g., Wallsten and
Budescu 1983), generally, this is not the case (see, e.g.,
Tetlock’s 2005 work in the political domain).

An alternative approach is to improve predictive judg-
ment by mathematically combining multiple opinions
or forecasts from groups of individuals—knowledgeable
experts or plain volunteers—(Clemen 1989, Soll and

Larrick 2009) or a consensus derived from interac-
tions among the experts in the group (Sunstein 2006).
Surowiecki (2004) has labeled this approach the “wis-
dom of crowds” (WOC). The claim is that mathematical
or statistical aggregates (e.g., measures of central ten-
dency) of the judgments of a group of individuals
will be more accurate than those of the average indi-
vidual by exploiting the benefit of error cancellation.
Indeed, Larrick et al. (2011) define the WOC effect as
the fact that the average of the judges beats the average
judge. Davis-Stober et al. (2014) propose a more general
definition, namely that some linear combination of
the crowd’s estimates should beat that of a randomly
selected member of the crowd. Their analysis indicates
that WOC is likely to be observed in a wide variety of
situations with relatively few exceptions.

The principles of WOC have been applied to many
cases ranging from prediction markets to informed
policy making (Hastie and Kameda 2005). Budescu
(2006) suggests that aggregation of multiple sources
of information is appealing and effective because it
(a) maximizes the amount of information available for
the decision, estimation, or prediction task; (b) reduces
the potential impact of extreme or aberrant sources that
rely on faulty, unreliable, and inaccurate information;
and (c) increases the credibility and validity of the
aggregation process by making it more inclusive and
ecologically representative. Interestingly, the judges
need not be “experts” and can be biased, as long as
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they have relevant information that can be combined
for a prediction (Davis-Stober et al. 2014, Wallsten and
Diederich 2001).

Critics of WOC have pointed to instances when
the crowd’s wisdom has failed to deliver accurate
predictions because the aggregate estimate was largely
distorted by systematic group bias or by a large number
of uninformed judges (Simmons et al. 2011). As an
alternative to simply averaging individual judgments,
researchers have proposed weighted models that favor
better, wiser, more experienced judges in the crowd
(e.g., Aspinall 2010, Wang et al. 2011). Such models
are a compromise between the two extreme views
that favor quality (expertise) and that rely on quantity
(crowds). To benefit fully from both the quality of the
experts and the quantity of the crowd, the challenge
is to identify the wiser members of the crowd and
appropriately weight their judgments.

We address this problem and propose a novel mea-
sure of “contribution to the crowd” that assesses indi-
vidual predictive abilities based on the difference of
accuracy of the crowd’s aggregate estimate with, and
without, the judge’s estimates in previous forecasts,
in the domain of interest, and we illustrate the effec-
tiveness of the new approach. The first case study
consists of binary predictions made over nine months
regarding the likelihood of current events in five dif-
ferent domains: business, economy, military, policy,
and politics. We validate this individual contribution
measure of performance and test whether a weighted
model based on individual contributions to the crowd
is reliably better than simply averaging estimates. The
second case study analyzes probability distributions of
professional forecasters for two economic indicators
over 53 quarters (13 years). We replicate our results
and demonstrate that our method can identify the
best subset of judges and that one can focus on their
average while ignoring all the others. We explore the
diversity of the crowd by identifying the best (and
worst) individuals within the crowd such that they can
be over- (and under-) weighted.

2. Wisdom of the Crowd (WOC)
The premise behind WOC is that individual knowledge
(signals) can be extracted, while minimizing (even-
tually, eliminating) biases or misinformation (noise)
by aggregating judgments (Makridakis and Winkler
1983). WOC generates its best results when the judges
are knowledgeable, properly incentivized to express
their beliefs, and obtain their responses independently
of each other, and when there is diversity of knowl-
edge and information in the crowd (see also Larrick
et al. 2011).

Successful implementations of WOC have gone out
of their way to foster diversity of opinions by (a) select-
ing judges with different backgrounds, (b) eliciting

their inputs independently, and (c) forcefully inject-
ing diverse thoughts to affect their original estimates
(Herzog and Hertwig 2009). Diversity is derived not
only from the group’s composition but also from the
method by which information is shared in the group
(Lichtendahl et al. 2013). If individuals are not given a
chance to think independently before responding, their
judgments could be biased by responses from the group
(Larrick et al. 2011). Lorenz et al. (2011) demonstrated
that even mild social influence can undermine the
effect of WOC in simple estimation tasks. In fact, the
higher the correlation between individual estimates,
the more judges are necessary to achieve the same
level of accuracy (e.g., Broomell and Budescu 2009,
Clemen and Winkler 1986, Hogarth 1978).

Of course, at least some of the judges must possess
relevant information, but in some cases the level of
information can be minimal. For example, Herzog and
Hertwig (2011) report a study predicting outcomes of
three soccer and two tennis tournaments that rely on
the recognition heuristic. Predictions based solely on the
judges’ ability to recognize some of the players’ names
(through their exposure to different media) gave the
group a diverse collective knowledge that was sufficient
to consistently perform above chance and as accurately
as predictions based on official rankings of the teams
and players.

In most WOC forecasting applications, the favorite
aggregation method is the simple average of the judg-
ments (Larrick et al. 2011),1 but this approach may be
suboptimal because it neglects external information
(e.g., expertise) and, as such, reduces the potential
to benefit from the wisdom found in the crowd. For
example, low-performing stock market analysts tend to
make bolder predictions that drive the average predic-
tion to a more extreme position (Evgeniou et al. 2013).
Lee et al. (2011) examined the bids of players on the
popular game show The Price Is Right. The aggregation
models, especially those that took into account strategy
and bidding history, outperformed all the individual
estimates, and those that used external information
outperformed the simple mean. Thus, including the
judges’ level of expertise has the potential to improve
the quality of the crowd’s forecasts.

We focus on aggregation of judges who provide
probabilities of future uncertain events. Our goal
is to combine the, possibly conflicting, probabilis-
tic judgments made by different individuals into
one “best” judgment. French (2011) refers to this as
“the expert problem.” Typically, the judgments are

1 Jose et al. (2014) make a case for robust measures based on trimmed
or winsorized means, and Hora et al. (2013) consider medians.
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probabilities or odds, but one could also combine
qualitative forecasts (see Wallsten et al. 1993). The most
popular weighting schemes are opinion pools of the
individuals’ judgments: from predictions of volcanic
eruptions to risk assessments in the nuclear power
industry (Aspinall 2010, Cooke and Goossens 2008).
Although there are more general formulas (French
1985, Genest and Zidek 1986), the most common aggre-
gation rules are the weighted linear (arithmetic) and
the weighted geometric means. In general, the linear
opinion pool, L, is higher than the geometric one, G,
which tends to reduce the influence of extremely high
values. Variations on these themes include averag-
ing the log-odds, log4pi/41 − pi55 and transforming
the mean log odds back to the probability scale (e.g.,
Turner et al. 2014).

The weights in the opinion pools often represent
the individuals’ relative expertise, but the concept
of “relative expertise” is ill-defined and subject to
many interpretations (French 2011). One possibility is
to assign weights based on “objective” (e.g., historical
track record, education level, seniority, and professional
status), “subjective” (e.g., ratings of expertise provided
by the judges themselves or others, such as peers or
supervisors), or a combination of the two. Another
approach is to define the weights empirically based
on the experts’ performance on a set of uncertain
“test” events, the resolution of which are unknown to
the experts, but known to the “aggregator” (person
or software) that assigns the weights in the opinion
pool (Bedford and Cooke 2001, Cooke 1991). Clemen
(2008) and Lin and Cheng (2009) have compared the
performance of Cooke’s empirical weights method with
equally weighted linear pools (“plain WOC”) and the
best expert’s judgment. The weighted method generally
outperformed both the equal weights method and the
best expert. However, different scoring rules (and differ-
ent tests) can lead to different weights. Soll and Larrick
(2009) point out that empirically weighted linear pools
tend to overweight a few individuals, which can lead
to extreme predictions. This may be suboptimal when
the test events and the actual events of interest diverge
and the correlation between performances of the two
is reduced.

In this paper, we develop and illustrate the use of a
new empirically weighted linear opinion pool. Unlike
Cooke’s approach, we do not use an independent stand-
alone set of pretest events to identify expertise. Instead,
the weights emerge in the process of forecasting based
on the judges’ performance relative to others (i.e.,
contribution to the crowd). We also develop a dynamic
version of the model that adapts to changes in the
decision environment and the judges’ performance as
new events are being resolved and included in the
model.

3. The Contribution
Weighted Model (CWM)

We define an individual’s contribution to the crowd to
be the change in the crowd’s aggregated performance,
as measured by some merit function, with and without
the target individual. This quantity measures the indi-
vidual’s expertise relative to the crowd, since it captures
the effect of inclusion or exclusion of each person in
the crowd. Once such individual contributions are
calculated, a contribution weighted model (CWM) is
devised to be applied in future predictions by the same
crowd of judges. To quantify the effects of WOC, we
need an appropriate measure of merit or quality of
the aggregate (and the individuals). In the context
of probability judgment, this measure is typically a
proper scoring rule (e.g., Bickel 2007). In this paper we
use a quadratic scoring rule (de Finetti 1962), but the
proposed approach and procedure can be applied to
all other (proper or improper) scoring schemes. The
following algorithm determines the contributions of
each judge in the crowd:

(1) Let N be the number of events forecasted, and
let Ri be the number of categories used in forecasting
event i (where i = 11 0 0 0 1N ). Let mir be the aggregated
(typically, the mean) probability of the crowd for each
outcome, r (where r = 11 0 0 0 1Ri) of each event (i =

11 0 0 0 1N ), and let oir be the binary indicator of the
actual outcome for each instance (0 = occur or 1 = not
occur). The crowd’s score for a given event, Si, is given
by the following:

Si = a+ b
Ri
∑

r=1

4oir −mir 5
20

(2) The performance of the crowd is aggregated
across all events, based on the quadratic score:

S = a+ b
N
∑

i=1

( Ri
∑

r=1

4oir −mir 5
2

)

0

The quadratic score is unique up to a linear transfor-
mation. We use constants a= 100 and b = −50 to yield
scores ranging from 0 to 100, where 0 indicates the
worst possible performance and 100 indicates perfect
performance. For binary events (Ri = 2), the expected
“uninformed” score is 75, and it is achieved when a
probability of 0.5 is assigned to all events.

(3) The contribution of each judge, Cj (where j =

11 0 0 0 1 J ), is calculated as the average difference between
the crowd’s scores based on the mean forecasts (mr ),
with and without the jth forecaster, across all Nj events
answered by the forecaster. We allow for the possibility
that not all judges forecast all the events by setting
Nj ≤N . Formally, this is expressed as

Cj =

Nj
∑

i=1

4Si − S
−j
i 5/Nj 0
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Figure 1 Screenshot of Probability Elicitation

Source. http://forecastingace.com (site discontinued).

This contribution, Cj , can be positive (indicating that
the judge’s forecasts improve on average the crowd’s S)
or negative (suggesting that the judge’s forecasts reduce
the average S of the crowd). It is inspired by the statis-
tical literature on measures of influence (e.g., Kutner
et al. 2005) that seeks to establish if, and by how much,
various parameters and predictions of complex sta-
tistical models are affected by specific observations,
by eliminating them (one at a time) from the sam-
ple. We hypothesize that weights based on Cj would
outperform those based on the judge’s absolute past
performance (track record). The key intuition behind
this prediction is that the forecasts of the various judges
will typically be highly correlated (see Broomell and
Budescu 2009). Thus, there will be many cases where
almost everyone in the crowd will have very good
scores and, conversely, cases where practically all the
members of the crowd will perform poorly. Measures
of absolute performance are not likely to be very dis-
criminating in such cases. However, Cj recognizes good
performance in a relative sense and places more value
on judges who have greater knowledge than the crowd.
Judges get a higher Cj if they do well in cases where
the majority of the crowd performs poorly, i.e., when
they do not follow the wrongful judgment of the crowd.
Our weighted aggregated model, CWM, employs only
judges with positive Cj in forecasting new events. These
Cj are normalized to generate weights such that the
aggregated prediction of the crowd is the weighted
mean of the positive contributors’ probabilities.

4. Study 1: Forecasting Current Events
To validate the weighting procedure and verify that
it can identify quality judges in the crowd, we ana-
lyzed data from the Forecasting ACE project website.2

Launched in July 2010, the website elicits probability
forecasts from volunteer judges who choose to forecast,

2 http://forecastingace.com, last accessed May 2013 (site discontin-
ued); see https://www.facebook.com/ForecastingACES.

at any time, any subset of events from various domains:
business, economy, entertainment, health, law, military,
policy, politics, science and technology, social events,
and sports. We focused on binary events: each event
describes a precise outcome that may or may not occur
by a specific deadline. On average, 15–20 events are
posted at various times every month with various
timelines (some as short as three days and some as
long as six months) depending on the nature of the
event. There are no restrictions on the number of events
for which a judge can provide probabilities.

Figure 1 shows a screenshot of a typical event. The
judge first makes a prediction on whether or not the
event will occur and then enters the subjective proba-
bility of the event’s occurrence by moving the slider.
The webpage enforces binary additivity by forcing the
probabilities of the Ri (in this case 2) possible outcomes
to sum to 1. The predictions and probabilities can be
revised any time before the closing date, but most judges
(90%) do not revise their initial judgments. The current
data analysis was conducted only on the last reported
probability for every judge for any given event.3

The judges are scored based on their participation
(number of forecasts performed) and accuracy of predic-
tion. A leaderboard serves as the only explicit incentive
provided by the website. In addition to providing fore-
casts, judges are encouraged to complete a background
questionnaire4 covering their self-assessed knowledge
of the domains, the hours they spend reading the news,
education level, and experience in forecasting.

4.1. Data Collection
Between the launch date of the site and January 2012,
1,233 judges provided forecasts for 104 events. The
judges answered an average number of 10.4 events
(SD = 12.64). We analyze only those judges who

3 Additional analysis showed virtually no correlation between timing
(from the time a forecast is submitted to the resolution date) and Ci .
4 The correlations between Ci and these measures are low.
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Table 1 Alternative Aggregation Models Compared to CWM

Model Description Justification

ULinOp Equally weighted S for all 1,233 judges (the crowd). Test CWM against unweighted S of entire data set.
UWM Equally weighted S for the subset of 420 forecasters who answered

10 or more events.
Test CWM against unweighted S of the same subset.

Contribution Equally weighted S of all positive contributors from the subset of
420 forecasters who answered 10 or more events.

Compare the advantage of weighting contributors.

BWM Weights are calculated with S for all of the 420 judges. The weights
depend only on the judge’s past performance (S5.

Compare CWM with weighted model based on absolute past
performance.

xBWM Same as BWM, but using a percentage of positive contributors similar
to CWM.

Compare CWM with weighted model based on absolute past
performance with the same number of positive contributors.

answered 10 or more events (n= 420). This threshold
is used to reduce the possibility that Cj capitalizes
on chance, which can easily happen in probabilistic
forecasting.5 In fact, the proper measurement of the
accuracy of an individual forecaster or a crowd aggre-
gate should be performed over a substantial number of
events and possibly, over an extended period of time.

These 420 judges responded to a mean number
of 23 events, reported a mean general knowledge
of current issues at approximately five on a seven-
point scale (1 = no knowledge, and 7 = extremely
knowledgeable), and reported spending on average
23 minutes a day reading the news. Their level of
education ranged from high school (4%) to Ph.D. (10%),
and most of them (64%) have at least a bachelor’s
degree. Most judges were novices, with only 37% of
the judges having experience in forecasting with an
average of five years.

4.2. Comparison of Aggregation Models
The performance of the CWM was compared with the
five competing models listed in Table 1. The first two
models (ULinOp and UWM) are unweighted means and
serve as a baseline to all other weighted models. UWM
is a “trimmed” version of the ULinOp that includes only
those judges who have answered 10 or more events.
The Contribution model is an unweighted version of the
CWM model, which uses only the positive contributors
and assesses the effect of choosing judges using the
new metric. BWM and xBWM are weighted models
built with the judges’ past S and, unlike CWM, the
weights are independent of the performance of the
other members of the crowd. BWM uses all 420 judges,
whereas xBWM, similar to CWM, uses the top 220 judges
to compute the weighted model.

To maximize the information used to compute Cj and
yet avoid overfitting, we cross-validated the models by
eliminating one event at a time (jackknifing). The CWM

5 Imagine, for example, a sports league wherein the home teams
win 60% of the games and a forecaster who predicts the results of
10 independent games. There is a probability of 0.37 (calculated by
the binomial distribution with p = 006 and n= 10) that the home
teams will lose a majority (six or more) of the games.

Table 2 Performance of the Models Compared (in Terms of
Their Scores)

S̄ of models across all events
Judges Mean positive

Model included contributors Min Median Mean Max SD

CWM 420 220 39093 91.90 88.26 99.56 12.06
Contribution 420 220 39052 89.55 86.46 99.50 11.82
UWM 420 — 41058 87.45 83.73 98.25 11.51
ULinOp 11233 — 42081 87.64 83.62 98.67 11.76
xBWM 420 220 9046 89.16 80.07 99.49 20.92
BWM 420 — 25031 82.84 77.35 97.93 17.65

used all events except for the one being eliminated to
compute the weights, and the aggregated forecast of
the jackknifed event was determined as a weighted
average of forecasts from positive contributors.6 Thus,
all predictions being considered are “out of sample.”

A summary of the performance of the competing
models is provided in Table 2, in which the models
are listed according to their mean scores, S̄. CWM
produces the highest S̄, which is highlighted in bold,
with Contribution running a close second. Only CWM
and Contribution beat the unweighted models, UWM
and ULinOp, (which are almost equally good). Our
metric of improvement is defined as 100[(difference in
the two S̄ being compared)/(100 − S̄ of the baseline
model)].

CWM beats the unweighted mean (UWM) values by
approximately 28% on this metric. The models that
weighted judges by past performance performed worse
than the UWM with a decline of 39% for BWM and
22% for xBWM.

The CWM’s superior performance stems from its
ability to identify the judges with specific knowledge.
The Contribution model (giving equal weights to posi-
tive contributors) produced 17% improvement over the
UWM. Thus, 60% of the CWM impact can be attributed
to identifying expertise and 40% to overweighting
those who perform better than the crowd on average.
To illustrate this point, we simulated forecasts for each
event from a beta distribution with the same mean

6 BWM and xBWM were cross-validated following the same jackknif-
ing procedure.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

16
5.

12
3.

58
.1

30
] 

on
 0

9 
O

ct
ob

er
 2

01
4,

 a
t 1

5:
57

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Budescu and Chen: Identifying Expertise to Extract the Wisdom of Crowds
6 Management Science, Articles in Advance, pp. 1–14, © 2014 INFORMS

Figure 2 Comparison of the Performance of CWM, BWM, and xBWM
Relative to the Simple Mean

xBWM

BWM

CWM

–80 –60 –40

Difference between S of weighted models and UWM
–20 0 20

and variance as the crowd’s estimates for that event.
This model performed well above the “uninformed”
baseline (75) but below the CWM. The key difference is
that, although each event is predicted equally well, the
contributions to the crowd are randomly distributed
across judges.

Figure 2 presents boxplots of the difference between
S of three weighted models (CWM, BWM, and xBWM)
and the baseline model (UWM) for all the events. The
figure shows that there are fewer outliers with CWM
because Ci is calculated relative to the crowd and is
less sensitive to individual performances, which have
higher variances (due to cases where most members of
the crowd are wrong).

As a sensitivity analysis, we repeated all the calcula-
tions using a logarithmic scoring rule (instead of the
quadratic one). The key results were replicated: the
CWM model had a S̄ of 87.17, a 7.21% improvement
over the UWM model (S̄ = 86018).

4.3. Domain Analyses of CWM
We applied the CWM model to the five major domains
separately, using only judges answering 10 or more
events in each domain, and cross-validated by jack-
knifing each event. Table 3 shows that the crowd
(not necessarily the same judges in each domain) per-
formed better using the CWM weighting than the
UWM. The CWM excelled in the domain of policy,
with an improvement of approximately 46% (in bold),

Table 3 Domain-Specific Comparisons of CWM and UWM

Mean Mean
No. of positive Mean S Mean S difference %

Domain events contributors of UWM of CWM in S improvement

All 104 220 83.73 88.26 4.53 27.86
Policy 32 52 84.33 91.51 7.18 45.84
Business 23 23 83.52 90.00 6.48 39.32
Politics 45 77 86.36 91.67 5.31 38.93
Military 19 33 84.78 87.71 2.93 19.27
Economy 16 10 77.85 81.73 3.88 17.51

and fared worst in economic events (with an improve-
ment of approximately 18% improvement). The overall
improvement, weighted by the number of events in the
five domains, is 35%. We caution that this is not directly
comparable to the general model (with approximately
28% improvement) because some events were included
in multiple domains. Figure 3 plots the relationships
between the contribution scores in the various domains.
All the correlations are positive, especially those involv-
ing military, policy, and politics events, suggesting that
the presence of an underlying general expertise factors
in geopolitics among our best judges.

4.4. A Dynamic Version of the CWM
As a test of the CWM’s true predictive powers, we
introduced 90 new events (posted between January
2012 and April 2012) and recomputed the weights in a
dynamic fashion. We used the original set of 104 events
to compute the initial weights for predicting the prob-
abilities of the first new event. Weights were then
recomputed with every new event that was resolved
for predicting the next one, and so on. The CWM
dynamic model based on new events showed an overall
improvement of 39%, despite the fact that the response
rate of the new events was lower (39 compared to
127 judges per event in the initial set).

The dynamic model did better at the aggregate
level, and the S̄ of the CWM was better than the S̄
of the UWM in 71 of 90 events (79%). This split is
significantly better than chance (50%) by a Wilcoxon
signed rank test with p < 00001. We also implemented
the dynamic model for each domain using the same
recursive procedure. Table 4 summarizes the results.
The CWM improved the S̄ in all domains, except for
economy. The superiority of the CWM over the UWM
model was significant in three of the five domains.

5. Study 2: Forecasting Inflation and
GDP in Europe

In this section we apply the CWM in a purely dynamic
setting while addressing some limitations associated
with special features of the ACES data set. Responses
in the ACES example are provided in a somewhat
arbitrary fashion—forecasters choose which events to
forecast, when to enter forecasts, and in what order to
forecast various events. The project involves multiple
domains and volunteer forecasters (so one could argue
that most are not experts in most domains). The first
goal of this second study is to validate the approach in
a single, well-defined domain with forecasters who are
recognized experts, and where predictions are made
on the same events at the same time (in a framework
with a more rigid and systematic temporal structure).

This also provides an opportunity to study the impact
of selectively reducing the number of positive contribu-
tors to improve the CWM. The creation of a smaller
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Figure 3 Distribution of Contribution Measures in Five Domains and Intercorrelations
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Table 4 Summary of the Performance of the Dynamic CWM for Each Domain

Mean Mean positive
Domain No. of events No. of judges contributors S̄ of UWM S̄ of CWM Difference in S̄ % of improvement

All 90 39.30 17046 83.56 87.90 4035 39040∗

Military 15 47.00 13053 85.41 92.46 7005 54012∗

Politics 49 36.80 14084 84.26 91.13 6087 53036∗

Policy 25 40.96 13028 81.74 84.35 2061 30048∗

Business 19 44.68 10074 82.75 82.97 0022 14076
Economy 16 37.31 9075 83.73 78.59 −5015 −10013

∗Significant (�= 0005) by a sign test.

crowd of positive contributors is based on the idea
proposed by Mannes et al. (2014), who stipulate that
averaging the opinions of a small crowd of properly
selected (three to six) experts can perform as well as
averaging the entire crowd. We examine the effective-
ness of using the judges’ contribution to identify this
“small crowd.”

5.1. Data Collection
We analyzed quarterly forecasts of the real GDP growth
and inflation rate in Europe using the European Central

Bank (ECB)’s Survey of Professional Forecasters. The
forecasts are in the public domain (http://www.ecb.int/
stats/prices/indic/forecast/html/index.en.html). The
entire data set consists of over 72,000 forecasts for three
EU economic indicators (inflation, real GDP growth,
and unemployment rate) across six time horizons by
professionals from the financial industry and academic
institutions. We focused on forecasts of (a) inflation
(i.e., the year-on-year percentage change of the Har-
monised Index of Consumer Prices, as defined by the
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ECB) and (b) GDP growth for nine months from the
date of the survey. The data include 2,386 forecasts
for GDP and 2,491 for inflation from the first quarter
of 1999 to the last quarter of 2011. Each forecaster
provided a probability distribution over seven to 22 cat-
egories (in the −6% to 4.9% range)7 depending on the
survey period. We collapsed all the probability distribu-
tions to the same seven categories for all periods. The
quadratic scoring rule was applied to the multinomial
distributions. The score ranges from 0 (worst) to 100
(perfect forecasts). The S of an “uninformed” judge
who assigns equal probabilities to the seven categories
is: 100 − 50641 − 1/752 + 640 − 1/7527 = 57015, which
serves as a baseline for analysis.

A total of 113 forecasters made at least one forecast
during the 52 periods, which we treated as 52 events
in the analysis. We analyzed only the 90 forecasters
who made at least two predictions. The mean number
of forecasts per quarter is 47 (SD = 5). We implemented
the dynamic CWM model at a yearly level: Ci was
first computed based on the probability distribution
for the four quarters. The CWM then used the first
year’s Ci (the mean Ci of the four quarters) to compute
the aggregate predictions for the second year. In the
third year, the CWM applied the mean Ci from the
first and second years to determine the aggregates of
that year. The model proceeded thusly for 12 years of
predictions.

5.2. Analysis of the CWM and the Contributions
Table 5 summarizes the performance of the CWM
model and its close variant, Contribution, relative to
the UWM for the 12 years. The results for inflation
replicate the results of the first study: (1) the CWM
beats the UWM on average and in most quarters,
(2) the Contribution model (that ignores the differen-
tial weights) performs almost as well as the CWM.
However, (3) the experts were very poor at predicting
GDP growth: neither the UWM nor the CWM beat the
uniform distribution, implying that there was little
knowledge for the models to extract. We compared the
judges’ performance in the two domains and found
only low levels of agreement: 27% of judges are positive
contributors in both domains, 32% are negative in both,
and most (41%) are positive in one domain but not the
other.

An in-depth analysis of contributors in the predic-
tion of inflation rates provides some insight into the
mechanics of the model. We calculated for each of
the forecasters the proportion of quarters in which
they were assigned a positive Cj (and were part of the
CWM). Figure 4 summarizes this information in the
form of a cumulative distribution. There is a distinct

7 The number of categories and their definition are determined by
the ECB for every quarter.

Table 5 Performance of Dynamic Models Predicting Inflation and GDP
in Europe

Contribution CWM

UWM No. of No. of
% of quarters > % of quarters >

Indexes S̄ S̄ improve. UWM S̄ improve. UWM

Inflation 57.86 60.31 5081∗ 3.08 60.97 7036∗ 2.83
GDP 53.39 54.43 2023 2.33 54.48 2034 2.42
Both 55.54 57.19 3071∗ 2.84 58.74 7020∗ 2.96

∗Significant (�= 0005) by a sign test.

cluster of forecasters who have positive Cj values in
most cases (31% of forecasters in over 80% of the
periods)—the “global” experts—and, at the other end
of the distribution, a slightly larger cluster of forecasters
who are almost never included (36% of forecasters in
less than 20% of the periods).

We classified the 76 judges who made at least 10 pre-
dictions into four groups based on their S being
above/below the “uninformed” level (57.15) and their
mean Cjs being positive/negative. Figure 5 presents
the pattern of Cj values of distinct types of judges
(who made predictions in a majority of the periods).
There are 20 (26%) judges who are “global” experts:
their S̄ is 60.8, their mean Cj is 0.17, and they get
positive Cj in 92% of the cases (e.g., forecaster 29 in
Figure 5). Moreover, their mean Cj value and S values
are positively and significantly correlated (r = 0047).
Conversely, there are 39 judges (51%) that perform
poorly by both measures—their S̄ is 48.0, their mean
Cj is −0013, they make positive contributions in only
16% of the cases (e.g., forecaster 33 in Figure 5), and
their mean Ci values and S values are positively and
significantly correlated (r = 0056). There are only two
judges (3%) with S̄ values above the baseline and mean
negative Cj values. However, there is an interesting
subgroup of 15 judges (20%) with S̄ (51.0) below the
baseline and mean positive Cj values (0.04) who are

Figure 4 Distribution of Percentage of Positive Contributions in the
Model Predicting Inflation
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Figure 5 Illustration of Several Types of Forecasters
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assigned positive weights in a majority (63%) of the
cases. In this group, the S̄ values and mean Cj values
are uncorrelated (r = 0004). Clearly, their Cj values vary
systematically as a function of the period, presumably
reflecting reliance on distinct cues that were particu-
larly diagnostic and valid at various times. Thus they
display “local” expertise. Some do very poorly first and
improve later (e.g., forecaster 90 in Figure 5); others
start very well but their performance deteriorates over
time (e.g., forecaster 4 in Figure 5). It is notable from

Figure 6 Performance of the Models as a Function of the Number of Top Contributors Selected
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Figure 5 that the weights have a clear temporal pattern
rather than a haphazard and random structure.

5.3. Identification of a Small Crowd
Can we use the Cj index to identify an optimally small
crowd of forecasters by using only the top K 4K =

11 0 0 0 1 J 5 contributors, and how is the group’s perfor-
mance affected by this reduction in size? Figure 6
plots the S̄ of the CWM and Contribution models for
inflation with a diminishing number of contributors.
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To put things in proper perspective and facilitate inter-
pretation, we also include the baseline of respondents
(who assign equal probability to the seven categories)
and the UWM. At the right end of the plot, “All”
includes all forecasters with positive Cj . The average
number of positive contributors over 12 years is 36.42
(SD = 3.23). The UWM (S̄ of 57.86) is only slightly
better (1.66%) than the baseline. The CWM (S̄ of 60.97)
and Contribution (S̄ of 60.31) beat the UWM (by 7.38%
and 5.81%, respectively).

As the inclusion criterion becomes more stringent
and group size is reduced, the performance of the CWM
and Contribution models reveals a remarkable pattern.
As the number of selected top contributors drops
below 16, the Contribution model (simple unweighted
mean of positive contributors) performs better than the
weighted model. Performance peaks with the six best
contributors, where the Contribution (S̄ = 62057, SD =

18.32) is 11.18% better than the UWM and 2.48% better
than the CWM (S̄ = 61062, SD = 18.19). Finally, when
the number of positive contributors drops below 3,
both models fare worse than the UWM or even the
baseline.

These results support the claim of Mannes et al.
(2014) that averaging a small crowd of properly selected
experts can do just as well as, or even better than,
averaging all judges (UWM) or using just the top-
ranking judge. The measure we used to identify these
top forecasters was Cj , as opposed to absolute past
performance used by Mannes et al. (2014), which is
based on the Mean Absolute Error. Study 1 indicates that
Cj is more stable over time than absolute measures. The
improvement of S between using a small crowd (three to
six experts) and all positive contributors (approximately
36 experts) is less than 2.43% for the CWM.

6. General Discussion
There are two distinct approaches in the quest for the
most accurate probabilistic forecasts. One approach
seeks to identify individual expertise, and the other
seeks to aggregate multiple opinions from a crowd
without differentiating among its individual members.
The key insight of WOC is that the aggregation process
reduces the effects of individual biases, and that the
central tendency of the crowd’s opinions can be used
to forecast the target events (Armstrong 2001, Clemen
1989, Wallsten et al. 1997). Our approach combines
the two philosophies by: (a) identifying the experts in
the crowd and (b) aggregating their opinions, while
ignoring the estimates of the nonexperts. This can also
be seen as a compromise between the two approaches.
The major contribution of the current paper is the
development and validation of our new measure for
identifying experts in a crowd by measuring their
contribution to the crowd’s performance.

We often assume that simply relying on past perfor-
mance on similar tasks is sufficient to identify expertise.
Indeed, if at some point in the process one were asked
to choose a single expert, we cannot think of a way of
selecting one that would beat this intuitive metric of
absolute quality of performance. However, if one con-
tinues to rely on a crowd (or at least a subset of its
members), our results show that one can do considerably
better by relying on the proposed measure of relative
quality, Cj . We illustrated this approach in two longitudi-
nal studies. By simply isolating the experts—those who
make positive contributions to the crowd—the mean
accuracy score improved in both studies compared to
the average of the crowd. When using the weighted
model (CWM) the performance improved even further.
This is not to say that every event, period, or game
predicted in the studies was improved by using only
the forecasts of these experts, but over time the variance
decreased and the model proved significantly better
than the simple (unweighted) mean(s) and weighted
means using all the forecasters.

Various sensitivity analyses confirmed the robustness
of the CWM model. We found that (1) the model was
successful in setups with sparse responses, (2) its per-
formance improved when applied separately to various
domains of expertise, (3) the measures of individual
contributions outperformed simulated judges with iden-
tical mean performance at the item level, (4) the results
were replicated with different probability distributions
(binomial in Study 1 and multinomial in Study 2), and
(5) the results were replicated with a different scoring
rule (logarithmic). All these findings indicate that Cj

reflects real expertise. Indeed, the comparison of the
CWM with simulated experts that predict equally well
at the item level but whose expertise varies randomly
from one event to another confirms this conclusion.

Our selection of experts is not based on the best
performers (highest S) because their performances
can be skewed by one or a few extreme predictions
(Denrell and Fang 2010) and be nondiagnostic in many
cases. We pick those who consistently outperform
the group, and our model is updated dynamically to
reduce variance due to chance results and to reflect
“true” expertise that emerges in the process.

The success of our approach is quite intuitive, once
one realizes that judges are usually highly correlated
(see Broomell and Budescu 2009) because they share
many assumptions and/or have access to the same
information. Consequently, crowds often behave like
herds, as almost everyone expects certain events to
happen (or not). In some cases, when judges choose to
forecast events that most people in the crowd predict
quite confidently and correctly, no one will get high Cj

values because the crowd is quite accurate. Conversely,
in other cases, when judges forecast events that most
people in the crowd predict incorrectly, no one will get
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low Cj values because the crowd is inaccurate. Such
events do not much affect the CWM model, which
assigns high (positive or negative) contributions to cases
where judges deviate from the majority of the crowd.
In this respect the CWM differs from the weighting
schemes that are based on absolute performance.

Consider, for example, the recent case when pre-
diction markets “failed” to predict the U.S. Supreme
Court’s decision regarding the Affordable Care Act.
(Prediction markets estimated a 75% chance that it
would not be upheld by the court.8) CWM identifies
and overweights the predictions of those judges who
do not necessarily follow the crowd in such cases and
perform well in moving away from the crowd. We
identify these consistently positive contributors and
use weighting to reap the benefits of (large or small)
crowds without predetermining the size of such a
crowd. As we show in Study 2, positive contributors
can be of two types. One group consists of undisputed
experts who beat the crowd consistently because of
their superior knowledge and/or ability to identify the
relevant cues from the environment and combine them
correctly. They are positively weighted in every period.
The second group involves judges who perform very
well in some, but not all, environments. The internal
mental models that lead to their predictions are imper-
fect, so they may not always identify and/or properly
weight relevant cues. Such judges do very well in
some circumstances but perform worse in other cases,
so they may be in or out of the subset of positively
weighted forecasters over various periods of time.

An interesting theoretical issue is what makes the
CWM work—its ability to identify the experts or their
differential weighting. Our results clearly suggest that
it is primarily the model’s ability to identify the experts
to be positively weighted (or in other words, its ability
to identify those members of the crowd who should be
excluded) that is responsible for most of the model’s
improvement. This is not surprising, as the relative
insensitivity of the model to departures from optimal
weighting is well recognized in the literature (e.g.,
Broomell and Budescu 2009, Davis-Stober et al. 2010,
Dawes 1979). In fact, once the smallest subset of positive
contributors is identified, there is a penalty associated
with differential weighting (see Figure 6), and a simple
unweighted mean of the carefully selected subset of
judges provides the most accurate predictions.

The dynamic implementation of the CWM is probably
the most attractive feature from a practical point of view.
Our results demonstrate that the CWM can easily adapt
to new events (producing 39% improvement over the
UWM in Study 1) by including new experts or discarding
old ones as their Ci values drop. For Study 1, the dynamic
model was especially useful in correlated domains like

8 See Leonhardt (2012).

military, policy, and politics (where predictions were
enhanced by 54%, 53%, and 31%, respectively) for judges
possessing knowledge that was adaptable to all three.
The strength of the dynamic model is that no forecaster is
ever totally and irreversibly eliminated from the crowd.
The model overweights positive contributors, but as
the environment or expertise changes, it learns and
adapts to a decline or incline in relative performance.
Judges who have negative Ci values (and are ignored for
a while) can find their way back if their performance
improves as a result of a change in the environment
or a deterioration in the performance of others (see
Figure 5). The beauty of the dynamic model is that it
can accommodate such changes in the environment and
adjust the inclusion status and the weights attached to
each judge. We illustrate this point in a small simulation
described in the appendix.

The approach we proposed is very general and flexi-
ble and can be easily refined by adjusting its various
features. Two directions that we think are especially
worth exploring in future research are (1) replacing the
exclusive reliance on the mean when calculating the
judges’ contributions by alternative measures such as
the median or weighted means that over- (or under-)
weight recent (or old) events and (2) replacing the
exclusive reliance on each judge’s complete history of
forecasts and focusing primarily on the most recent
forecasts (e.g., by using a rolling history of the last
X periods).

Another avenue for refinement is the starting weights
assigned to each person. In our applications we focused
on forecasters who established a track record by hav-
ing made a minimal number of forecasts (e.g., more
than 10% of predictions in Study 1) for computing
contributions. The rationale for this choice was to make
sure that the contributions are based on knowledge
and not mere chance. In some cases this requirement
may be too strong and impractical. One simple and
sensible alternative rule is to let the contribution at
period t be a dynamically weighted average of the
contribution based on the previous (t − 1) forecasts
and some constant K (which could be an equal weight,
1/N , or some prior measure).

Cit =WtCi4t−15 + 41 −Wt5K1 with 0 ≤Wt ≤ 10

The weight assigned to the prior contributions, Wt ,
can increase from 0 on the first period to 1, as a func-
tion of the amount of information that one considers
allocating to past performance, where a weight of 1
relies exclusively on past performance.

7. Conclusion
We proposed a new measure of individual contribution
that is simple, reliable, easily interpreted, and useful
for assessing a forecaster’s performance relative to
a crowd. We showed that, in addition to identifying
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the experts (who always do well and better than the
crowd) and eliminating the persistent and consistently
poor performers, the method derives strength from
being able to identify “local expertise” and properly
rewarding those instances where judges rely effectively
on cues and information that are diagnostic in particular
circumstances (but not others). This illustration also
highlights the flexibility of the dynamic model that we
advocate. We tested our model in two contexts, and in
all cases it outperformed models built solely on past
individual performance and on the simple average of
the crowd. It works well when there is longitudinal,
categorical data even in cases of sparse data, and it
identifies the experts relatively quickly.

Figure A.1 Number of Positive Contributors of Type 1, Type 2, and Type 12
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Figure A.2 Number of Positive Contributors of Type 1 and Type 2 for xBWM and CWM
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Supplemental material to this paper is available at http://dx
.doi.org/10.1287/mnsc.2014.1909.
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Appendix. Simulation of Diversity
To illustrate the effect of information diversity, we simulated
a sequence of 60 binary events. The “true” probability of
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each event is a logistic function of two cues, X1 and X2:

Pr4Eventi5=
exp4�1X1i +�2X2i5

1 + exp4�1X1i +�2X2i5

The two cues are sampled from a bivariate normal distribution
with equal means (�x1 =�x2 = 004), equal variances (�x1 =

�x2 = 1) and a relatively low intercorrelation, �x1, x2 = 002.9

The key manipulation is that there are three distinct
“periods” (or regimes) defined by different parameters:

• In period 1 (events 1–20) both cues play an equal role
(�1 = �2 = 1).

• In period 2 (events 21–40) we set �1 = 1 and �2 = 0, so
only X1 matters.

• In period 3 this is reversed and only X2 drives the
probability (�1 = 0; �2 = 0).

We define a population of 90 forecasters of three “types”
defined by the cues to which attend: type 1 forecasters
(n1 = 30) only consider X1, type 2 forecasters (n2 = 30) have
access to only X2, and type 12 forecasters (n12 = 30) consider
both cues (of course, the individual judgments are perturbed
by random errors). If our account holds, we expect that
judges of type 12 will do relatively well throughout, but we
expect judges of types 1 and 2 to surge and be overweighted
by the model in periods 2 and 3, respectively.

The prediction was confirmed when we ran the dynamic
model. The top panel of Figure A.1 presents the proportion
of judges of each type that had positive weights at each
stage. Period 1 is characterized by high fluctuations because
of the small number of events but, on average, the three
types fare equally well (i.e., on average 43 judges (48%) are
assigned positive contributions and the three types are almost
equally represented by 33%, 37%, and 30%, respectively).
However in period 2, judges of type 1 dominate (18/45
positive contributors = 40%), and in period 3, forecasters of
type 2 are a clear majority (20/44 = 45%).

This pattern was even more pronounced when we reran
the model with only the 60 judges of types 1 and 2 for
both the CWM and xBWM (using the top 50% of judges as
measured by their S), as shown in Figure A.2. The CWM
model does a much better job than the xBWM model of
detecting differential performance of subgroups of forecasters
in changing regimes and of putting this information to
good use. The CWM is less influenced by the variance in
performance over the three periods.
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