A framework for risk management in aviation safety at state level

David Ríos AXA-ICMAT Chair in ARA and Royal Academy

with Cesar Alfaro and Javier Gómez and staff from AESA

COST ESR on Expert Judgement ICMAT, April 2015

- Aviation Safety
- Framework for Risk Management in Aviation Safety at State Level
 - Slide deployment
 - Fuel for holding
- Expert judgement issues
- Discussion and challenges

A FRAMEWORK FOR RISK MANAGEMENT IN AVIATION SAFETY AT STATE LEVEL (WITH AESA)

Safety is Critical in Civil Aviation

SAFETY

- Safety is Critical in Civil Aviation
 - Increasing complexity of the global air transportation system;
 - Interrelated and complex nature of aviation activities;
 - Traffic growth and;
 - Increasing competition forcing cost reduction (even more under recession)...

We need to assure the safe operation of aircrafts through tools and methodologies supporting the continuous evolution of a proactive strategy improving safety performance

However... relatively simple tools for safety risk analysis for commercial aviation operations

SAFETY MANAGEMENT

OCCURRENCE CATEGORY / EVENT TYPE						
RISK MATRIX	Without Safety Effect	Significant Incident	Major Incident	Serious Incident	Accident	
Extremely Unlikely						
Extremely Remote						
Remote						
Reasonably Possible						
Frequent						

ARMS, Bowtie, IRP,...

STATE SAFETY PROGRAMME?

- ICAO : "An integrated set of regulations and activities established by a State aimed at managing civil aviation safety"
- Support strategic decision-making in adopting better decisions when allocating scare resources to higher safety risk areas
- To implement preventive approach for safety oversight and to manage safety at a State level, States must develop a State Safety Program (SSP)

SPANISH AVIATION INDUSTRY

- Aircraft Design and Production
- Airlines
- Aerial Work Companies 219
- Aircraft Maintenance Org. >150
- Training Organizations
- Aircraft (total)
- Licensed personnel
- 232 airfields (47 airports)
- 62 ATM dependencies
- 340 Air Navigation Aids

14

117

6,400

>40,000

MODELLING APPROACH

- Incident forecasting
- Incident consequence assessment and forecasting
- Risk mapping
- Deciding on interventions
- Detailed analysis of chosen incidents

STATE SAFETY PROGRAMME ACTIVITIES

Mandatory Occurrence Reporting System (SNS & CEANITA)

INCIDENT FORECASTING

- (Non-homogeneous) Poisson processes
- Exploratory data analysis
 - Base rate (operations, cycles, usage)
 - Effects (Basic, seasonal, stress, geographical)
- Expert prior elicitation
- Forecasting incidents
 - Annual forecast for risk assessment
 - Monthly forecast monitoring for tracking incidents, alarm setting ('quality control')

□ INCIDENT RATES. EXPLORATORY ANALYSIS.

INCIDENT RATES. EXPLORATORY ANALYSIS.

IS THE TYPE OF INCIDENT STANDARD?

GROUP	OCCURRENCE CATEGORY	OCCURRENCE TYPE	GEOGRAPHICAL VARIATION	STRESS EFFECT	SEASONAL VARIATIONS
AIRPORT ENVIRONMENT	HANDLING	VEHICLE/EQUIPMENT COLLISION WITH A/C	NO	NO	NO
		HANDLING PROCEDURES	NO	NO	NO
		FLIGHT DISPATCH	NO	NO	NO
		DANGEROUS GOODS	NO	NO	NO
		INAPPROPIATE VEHICLE MOVEMENTS	NO	NO	NO
		HANDLING EQUIPMENT (MAINTENANCE AND AVAILABILITY)	NO	NO	YES
	INFRAESTRUCTURE	DESIGN, BEACON AND OTHER SYSTEMS	NO	NO	NO
		AIRPORT MAINTENANCE	NO	NO	NO
		FOD	NO	NO	NO
		AIRPORT SERVICES	NO	NO	NO
	GROUND COLLISION	PROPELLED A/C	NO	NO	NO
		NO PROPELLED A/C	NO	NO	NO
		GROUND LOSS OF SEPARATION	NO	NO	NO
	ANIMAL INCURSION	IN RUNWAY	YES	NO	NO
	ANIMAL INCONSION	IN RAMP/TWY	YES	NO	NO
	MANIODDA DDUCCA		N L A	0	N1A

□ INCIDENT FORECASTING: BASIC MODEL

41

17

8.4

Pred. Std.

INCIDENT FORECASTING: SEASONAL, STRESS, RELATED INCIDENTS, DYNAMIC

For type k incident

New forecasting algorithms for new models defined

→ Geographical effect. Clustering, Hierarchical model

FORECASTING INCIDENT CONSEQUENCES

Model

 $m_k | p_k, X_k \sim \mathcal{M}(X_k, p_k)$

THE PROBLEM OF UNDERREPORTING

Model

FORECASTING INCIDENT CONSEQUENCES

$$\begin{split} t_d &= p_0 I_0 + p_1 F_{d_1} + p_2 F_{d_2} & F_{d_1} \sim Wei(\theta = 0, \alpha_1, \beta_1), \\ p_0 + p_1 + p_2 &= 1 \\ p_0, p_1, p_2 \geq 0 & F_{d_2} \sim p \cdot Wei(\theta = 0, \alpha_2, \beta_2) + (1-p) \cdot Wei(\theta, \alpha_3, \beta_3) \end{split}$$

$$(n_{vm}, n_h, t_d, c_c, n_{rm}, d_{img}),$$
 $u(v) = -\exp(kv)$

$$v(n_{vm}, n_h, t_d, c_c, n_{rm}, d_{img}) = -c_{vm}n_{vm} - \sum_{i=1}^5 c_h^i n_h^i - c_d t_d - c_c - \left(c_{rm}^1 n_{rm}^1 + c_{rm}^2 n_{rm}^2\right) - c_{img}d_{img}$$

FORECASTING INCIDENT CONSEQUENCES

Expected costs

Expected number of incidents

→ (FOR A LARGE NUMBER OF YEARS)

GENERATE RATE GENERATE TYPE PROBABILITIES INPUT NUMBER OF OPERATIONS GENERATE N(O.INCIDENTS) FOR I=1 TO N GENERATE TYPE GENERATE COST

RISK MAPPING

Mapping (forecasted) incident numbers vs (forecasted) incident costs (expected, boxplots)

Less but more expensive	More and more expensive		
Less and less expensive	More but less expensive		

RISK MAPPING

Annual comparison

(FOR A LARGE NUMBER OF YEARS)

COST=-X(=SUM X_I) INPUT N(UMBER OF OPERATIONS) FOR EACH TYPE OF INCIDENT GENERATE RATE GENERATE TYPE PROBS. GENERATE N(0. INCIDENTS) FOR I=1 TO N GENERATE INCIDENT GENERATE TYPE GENERATE COST_TYPE COST=COST+COST_TYPE COST=COST/N

SIMULATE FOR SEVERAL X FIT REGRESSION METAMODEL OPTIMIZE GIVEN BUDGET

Deterministic version

$$x = (x_1, \dots, x_l) \qquad \Psi(x) = \sum_j \left[(\lambda_{x_j}^j \times n) \sum_{i=1}^5 p_{x_j}^{ij} E(Cost_i^j | x_j) \right] - \sum_j x_j$$

 $\lambda_{x_j}^j = \lambda^j \exp(-k_j x_j)$

$$E(Cost_i^j|x_j) = E(Cost_i^j|0)\exp(-c_j x_j)$$

 $\min \Psi(x) \ s.t. \sum_{j} x_j \le B$

$$p_{x_j}^{ij} = p_0^{ij} \exp(-p_{ij}x_j), i = 2, ..., 5$$

$$p_{x_j}^{1j} = 1 - \sum p_{x_j}^{ij}$$

- Pick those in the anti-Pareto frontier
- Pick some of those more costly
- Pick some of those more frequent
- Pick those that go worse
- Pick novel issues
- → Relate with resource allocation
- Screened by experts
- Finally decided by politicians

'TOP 10'

Airport environment: Handling
Aircraft operations: Operations at low altitude, runway excursions
Air navigation service: Runway incursions, TCAS notices, airspace infringement
Airworthiness: Engine system failure in general aviation
Emerging issues: Bird strikes, laser disruptions

DETAILED ANALYSIS FOR SOME INCIDENTS

- Unintended slide deployment
- Fuel for holding
- → (Runway excursions)

UNINTENDED SLIDE DEPLOYMENT

FUEL FOR HOLDING

- Competition forces companies to reduce costs, without jeopardising safety.
- ✤ Fuel costs more than 25% DOC
- ATFM delays at congested airports. 1250 M euros in total costs, average.
- Airline fuel policies and regulatory requirements should ensure every flight carries enough fuel for the planned route, and additional reserve to cover deviations; e.g. ATFM delays.
- When delays occur at destination, holding may be required by ATC.
- Flight crew will be able to hold depending on the remaining fuel quantity. Inability to hold will cause divert to an alternative airport. Not a simple decision, as it entails significant DOCs.

EXPERT JUDGEMENT ISSUES

- For many safety issues little relevant data
- Priors to be elicited all over the place
 - Based on observables
 - **>** Based on quantiles
 - → Aggregate through averages
- Utilities also need to be elicited

Gracias!!! Thanks!!!

david.rios@icmat.es