Experts in uncertainty An introduction to the classical model

> Tina Nane Delft University of Technology

The classical model

- The classical method
- Cooke's model/method
- Cooke's classical model/method
- Classical model for expert judgement
- Structured expert judgment (SEJ)
- Structured expert judgment: the classical model (wikipedia)
- Structured elicitation of expert judgement(s)

Why EJ?

- No (or not much) data available
- Data sources in an inadequate form for the analysis
- Data sources fraught with problems
 (i.e., poor entry, bad data definitions, etc.)

SEJ elicitation

- The process (protocol) of obtaining information about uncertain events from experts
- Variable of interest

When will man land on Mars? 5%____, 50%____, 95%____

SEJ elicitation

- The process (protocol) of obtaining information about an uncertain events (probability distributions) from experts
- Variable of interest

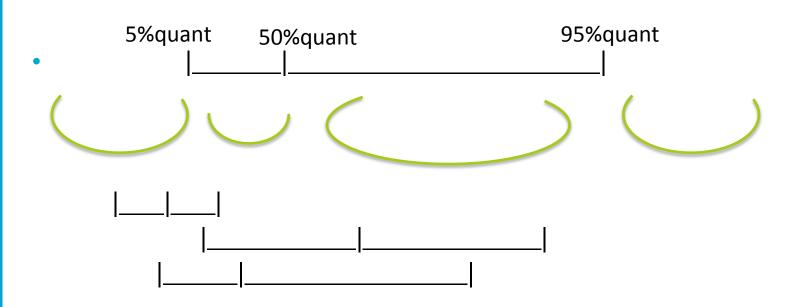
When will man land on Mars? e₁: 5% <u>2035</u>, 50% <u>2050</u>, 95% <u>2070</u>

e₂: 5%<u>2018</u>, 50%<u>2025</u>, 95%<u>2100</u>

- 50% quantile (50th percentile) best guess
- 5% quantile (5th percentile) P(X≤2035)=0.05
- 95% quantile (95th percentile) P(X≥2070)=0.05

5

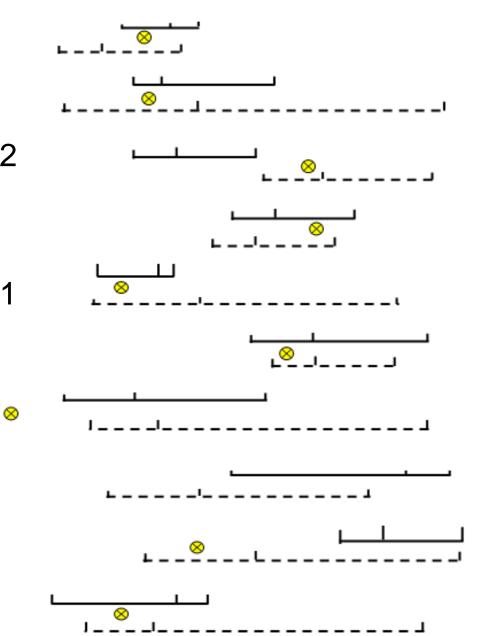
SEJ elicitation


 Questions for which we know the true values (calibration, performance, seed questions/variables)

What was the 1946 RAND forecast for year of first launched satellite?

e₁: 5% 1970, 50% 1975, 95% 1985
e₂: 5% 1950, 50% 1960, 95% 2000
$$1957$$
 | | |
1970 1975 1985
• Sputnik – 4 October, 1957

- Are the expert's probability statements statistically accurate?
- Calibration measures how well experts' assessments correspond to actual values (realizations)
- Statistical accuracy
- Calibration is a statistical question we need a sufficient number of calibration variables (seed questions) to compare assessments to realizations with any confidence


- p₁ =0.05, p₂ =0.45, p₃ =0.45, p₄ =0.05
- $p=(p_1,p_2,p_3,p_4)$
- $s=(s_1,s_2,s_3,s_4)$ for expert e_1 ?

ŤUDelft

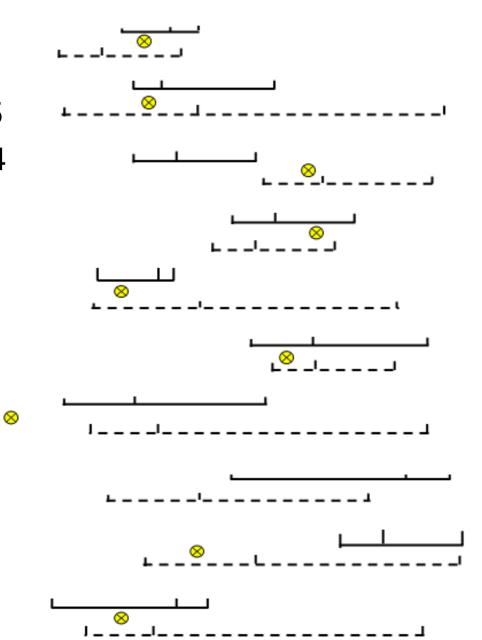
• $s_1=0.2, s_2=0.5$ $s_3=0.1, s_4=0.2$ (for expert 1)

•
$$s_1 = 0.1, s_2 = 0.6$$

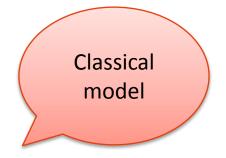
 $s_3 = 0.2, s_4 = 0.1$
(for expert 2)

TUDelft

- We expect some discrepancy between s and p, due to random fluctuation
- To measure the discrepancy between s and p, we use the relative information of s relative to p


$$I(s,p) = \sum_{i=1}^{4} s_i \ln(s_i/p_i)$$

 For n questions and 3 elicited quantiles Cal(e) = 1- χ²₃ (2nl(s,p))



Cal(1)=0.0275
 Cal(2)=0.3944

Delft

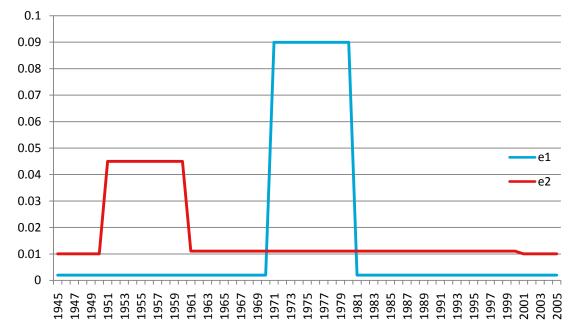
 \otimes

- Measure the degree to which the data supports the hypothesis that the expert's probabilities are accurate
- We do not say we (fail to) reject expert hypothesis
- Low scores, near zero, mean that it is unlikely that the expert's probabilities are correct
- High scores indicate good support

 Information in a distribution is the degree to which the distribution is concentrated

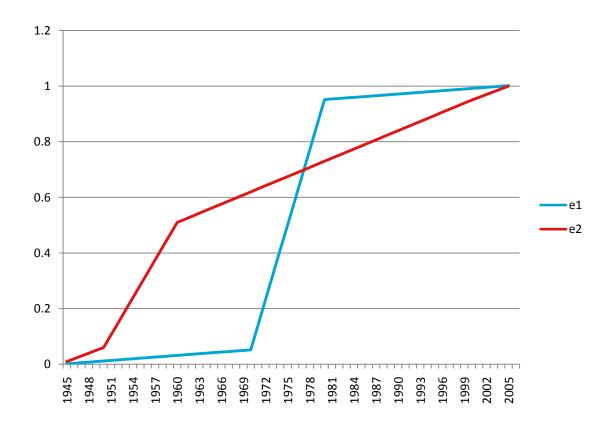
	What was the 1946 RAND forecast for								
		year	of first sa	tellite (1	.957)?				
e ₁ :	5%_	<u>1960</u>	_, 50%_	1965	_, 95%_	1970			
e ₂ :	5%_	<u>1950</u>	_, 50%_	<u>1960</u>	_, 95%_	2000			

 Measuring information requires associating a density with each assessment of each expert



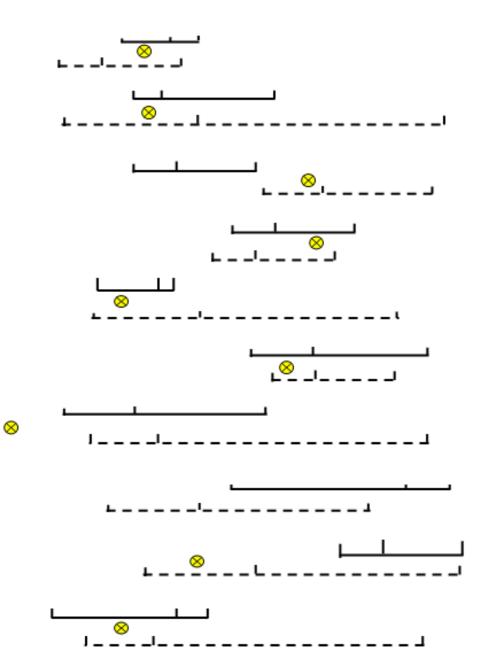
- Information is measured with respect to a background measure (chosen by the analyst)
 - Uniform
 - Log-uniform
- The background measures require an *intrinsic* range on which measures are concentrated
- k% overshoot rule
 - For each variable, the smallest interval I=[L,U]
 - Extend I to $I^* = [L^*, U^*]$, where k(U - L) k(U - L)

$$L^* = L - \frac{\pi (0 - L)}{100}, U^* = U + \frac{\pi (0 - L)}{100}$$


k is chosen by the analyst (typically k=10)

 Probability mass function which agrees with experts' percentile assessments, relative to the uniform measure

• *I** = [1945,2005]


Inf(i,Unif)= relative information wrt background

$$Inf(e) = \frac{1}{n} \sum_{i=1}^{n} Inf(f(i), Unif)$$

 High values indicate that the expert is adding "a large amount of information" to the background distribution

Inf(1)=1.149
 Inf(2)=0.5912

 \otimes

What is a GOOD subjective probability assessor?

- Calibration (statistical accuracy)
 - Are expert's probability statements statistically accurate?
 - A high calibration score
- Informativeness
 - Probability mass concentrated in a small region, relative to the background measure
 - High information score

Expert performance CAN be objectively measured

Very High Information, Very Poor Statistical Accuracy

	Expert no. : 30 Expert name: 035 Items 44(U) [x] Real ::::::::::::::::::::::::::::::::::::
	45(U) Real :::::#:::::::::::::::::::::::::::::::
	46(U) Real #
	47(U) [*-] Real #
	48(U) [] True value
	49(U) Real :::::#:::::::::::::::::::::::::::::::
	50(U) [*] Real ::#::::::::::::::::::::::::::::::::::
	51(U) [*] Real :::::#:::::::::::::::::::::::::::::::
	52(U) [-*-]
Statistical A	ccuracy: 0.0000067
Informativen	

Expert performance CAN be objectively measured

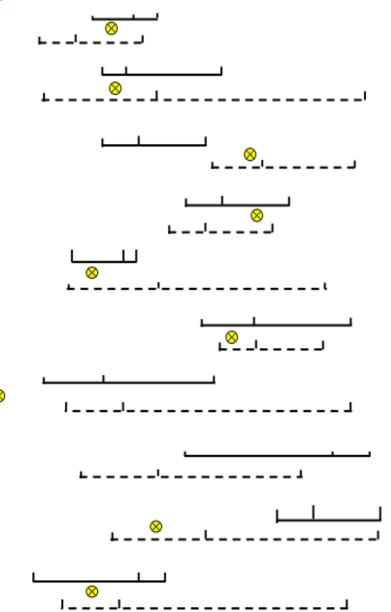
Low Information, Good Statistical Accuracy

Items	no. : [-	name: 	1		
45(U) Real	 •••••••	:#:::::		* : : : : : : : : :]
46(U) Real					 .:#::::::		1
47(U) Real							
48(U) Real]
] ::::::::::	
Real							
51(U) Real							
52(U) Real		[::#::::	 ******]

Statistical Accuracy: 0.57 Informativeness: 0.53

Expert performance CAN be objectively measured

High Information, Decent Statistical Accuracy


	Expert Items					-																				
	Items 44(U) Real					[::#:	 		* :::]	 ::	 		::				::	:		:=:	: :		::	::	
	45(U) Real		[× :#::] ::::		 			 	::	 	::	::		::	::	::	:		:=:	: :	::	::	::	
	46(U) Real						 			 	:#	 *	::	::]	::		::	= = :		:::	: :		::	::	
	47(U) Real			[]	-×]	 :::#	*:::		 	::	 	::	::		::	::	::	= = :		:=:	: :	::	::	::	
	48(U) Real			*−] ::#:			 			 	::	 	::	::				::	= = :	:	:=:	: :		::	::	
	49(U) Real		[- × -] #:::			 		:::	 	::	 	::	::		::	•••	::	:		:=:	: :	::	::	::	::
	50(U) Real	[* ::#:	*] ::::				 		:::	 	::	 	::	::		::	•••	::	:		:=:	: :	::	::	::	::
	51(U) Real		[×	-] :#::			 		:::	 	::	 	::	::		::	::	::	:		:=:	: :	::	::	::	::
	52(U) Real																									
	53(U) Baal						 		[::	 	1	::				::	:		: = ;	::			::	
Ac	curac	y: ().12	2																						
~ ~	00011	77																							2	22

Informativeness: 1.77

Statistical

Combined score

- Cal(e)*Inf(e)
- Score(1)=
 0.0275*1.149=0.0315
- Score(2)=
 0.3944*0.5912=0.2331

Decision Maker (DM)

	Expert	Calibration	Informativeness
	Expert 1	0.06083	0.91
	Expert 2	0.00628	1.56
	Expert 3	0.01397	1.24
	Expert 4	0.6827	0.82
	Expert 5	0.002809	1.15
С	Expert 6	0.05706	1.32
	Expert 7	0.01397	1.10

• Cal(e)≥0.05

Combined expert score
Significance Level

$$w_{\alpha}(e) = Cal(e) * Inf(e) * 1\{Cal(e) \ge \alpha\}$$

 $= 1 \text{ if calibration} \ge \alpha, \text{ else } = 0$

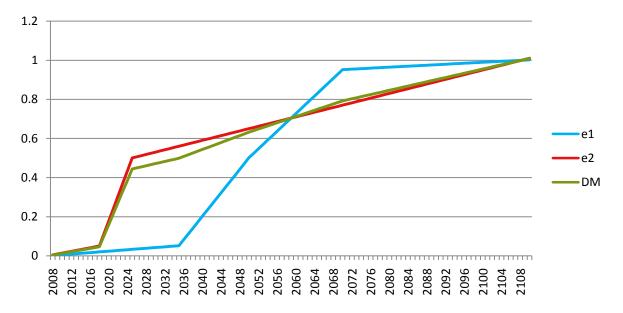
- This score is an asymptotically proper scoring rule, i.e.
 - Expert maximizes long run expected score by, and only by, stating percentiles which (s)he believes

$$DM_{\alpha} = \frac{\sum_{i=1}^{E} w_{\alpha}(e_i) f_{e,i}}{\sum_{i=1}^{E} w_{\alpha}(e_i)}$$

Optimization

- Q: How to choose α?
- A: For each α, compute

 $Cal(DM_{\alpha}) * Inf(DM_{\alpha})$


choose α for which this is maximum

Decision Maker (DM)

• Performance based weights (PW) $w_1 = \frac{0.0315}{0.0315 + 0.2331} = 0.12$ 0 2331

$$w_2 = \frac{0.2331}{0.0315 + 0.2331} = 0.88$$

Another approach – Averaging quantiles

- Performance based weights (PW)
 w₁ = 0.12
 w₂ = 0.88
- $DM_{PW} = w_1e_1 + w_2e_2$ - 50% - 0.12*2050+0.88*2025=2028 - 5% - 0.12*2035+0.88*2018=2020 - 95% - ...

Another option - Equal weights

When will man land on Mars? e₁: 5% <u>2035</u>, 50% <u>2050</u>, 95% <u>2070</u> e₂: 5% <u>2018</u>, 50% <u>2025</u>, 95% <u>2100</u>

Equal weights?

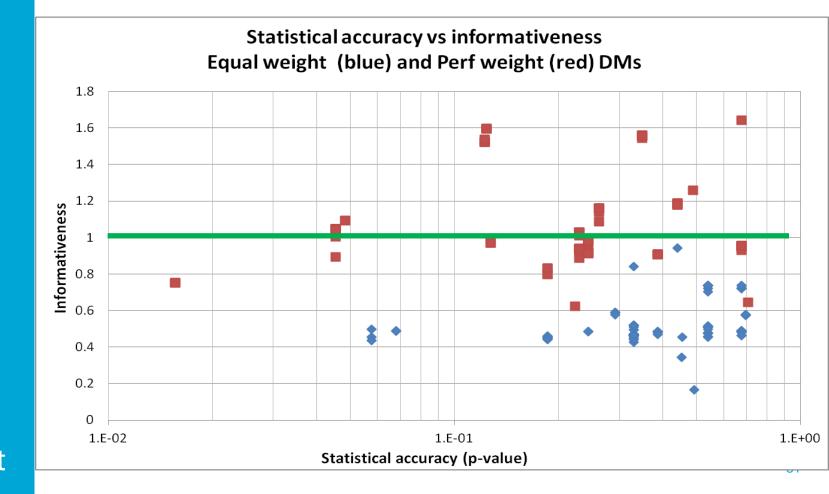
- 50% -
$$\frac{1}{2}$$
 2050 + $\frac{1}{2}$ 2025 = 2037 $DM_{EW} = \frac{1}{2}e_1 + \frac{1}{2}e_2$
- 5% ..., 95% ..., f(i)

1

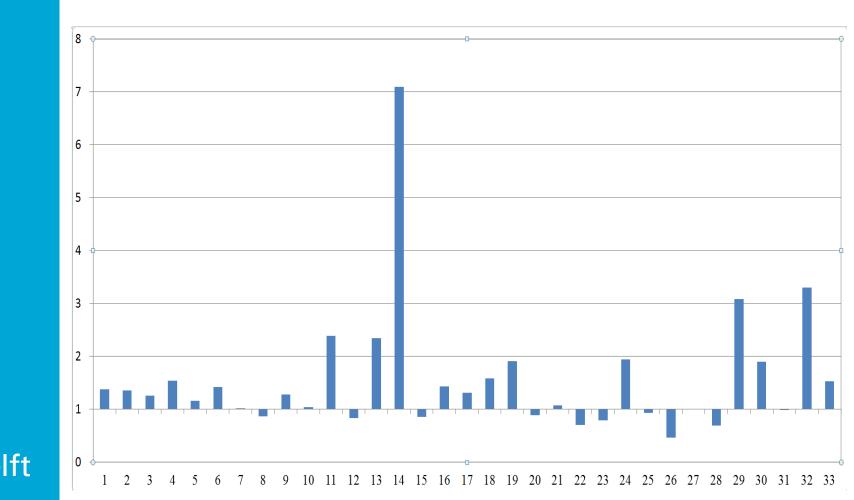
1

Combining experts

Equal weights


Performance based

Global weights: Calibr*Ave Inf*cutoff
 Item weights: Calibr*Inf per item*cutoff


Why bother?

 Performance based combination of experts improves statistical accuracy and informativeness

Out of sample validation

- Training sets sized at 80% of the calibration variables
- Ratio PWCombined/EWCombined

Questions?

SEJ for rational consensus

- Parties pre-commit to a method which satisfies necessary conditions for scientific method
 - Traceability/accountability
 - Neutrality (don't encourage untruthfulness)
 - Fairness (ab initio, all experts are equal)
 - Empirical control (performance measurement)
- Goal: comply with the principles and combine experts' judgements to get a GOOD probability assessor

SEJ theses

- SEJ is not knowledge
- Experts can quantify uncertainty as subjective probability
- Experts don't agree
- We can do better than equal weighting
- The choice is not whether to use expert judgment, but whether to do it well or badly

