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Motivation: application

• Transports sector: concerns about energy dependency 

and environmental impacts

• Electric Vehicles (EV) as an alternative to traditional 

vehicles

• Need to estimate EV adoption and its drivers

• Consumer preferences are the main factor
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Motivation: MCDA methodology

• To investigate the potential of UTA-based approaches 

(additive value model inference) for modelling individual 

preferences

• To confront two methods to elicit holistic preferences 

(the inputs for UTA)

– Five best-worst questions in sets of three alternatives

– A ranking of a set of seven alternatives 
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Summary

• Motivation

• Background

• Research questions (outline)

• Preliminary survey and lessons learnt

• Second survey

• Results

• Conclusions and work in progress
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Background: Additive value model
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Background: UTA 
(Utilités Additives, Jacquet-Lagrèze and Siskos 1981)
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Background: UTA 
(Utilités Additives, Jacquet-Lagrèze and Siskos 1981)

• Inference of single-attribute value and weights
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Research questions (outline)

• Q1: can single-attribute value functions and weights be inferred 

using a multi-attribute additive model?

• Q2: can weights be inferred using a multi-attribute additive model, 

after eliciting single-attribute value functions?

• Q3: can single-attribute value functions be inferred using a multi-

attribute additive model, after eliciting their weights?
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Research questions (outline)

• Q4: Do the holistic rankings agree with the elicited MCDA model?

• Q5: Do the best-worst answers agree with the answers that would 

correspond to the elicited MCDA model?

• Q6: Are the best-worst answers, before and after MCDA analysis, 

the same?
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Preliminary survey
- Data collection

• MCDA conducted by trained analysts (MSc & PhD 

students)

• Each analyst interacted with several subjects (the 

potential decision makers), one at a time (convenience 

sample, n=376) 

• Excel template to collect data about the decision 

maker, his/her vehicle, and preferences  (criteria, piece-

wise linear value functions, scaling weights, final 

ranking)

• The Excel template also performs the additive model 

computations
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Preliminary survey
- Mandatory and elicited values

• Predefined set of alternatives 

(Nissan Leaf,  Opel Ampera,  Renault Fluence 1.5 dci 

and ZE,  Toyota Auris 1.4 D-4D, 1.6 valvematic and 1.8 

hybrid,  Toyota Prius)

• Free set of criteria (to be elicited and structured)

• Performance table to be built from scratch (data 

available)

• Value functions to be elicited by direct rating 

(with instructions)

• Scaling weights to be elicited (with instructions)
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Preliminary survey
- Lessons learnt

• A few criteria are used more often: initial cost, running 

costs, design, performance, comfort, brand),

but…

• Affect can be an overwhelming factor (“I would never 

buy this ugly car”, “All my life I had Opel cars”, “I would 

never buy a Toyota”, etc.)

• Direct rating for the value function tends to elicit round 

ordinal scores (e.g. best=10, 2nd best=9, etc.)

• Scaling weights are confused with intuitive importance

 DMs rarely agree with the ranking provided by MCDA
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Second survey
- Data collection

• MCDA conducted by trained analysts (MSc & PhD 

students)

• Each analyst interacted with several subjects, one at a 

time (convenience sample, n=256) 

• Excel template to collect data about the decision 

maker, his/her vehicle, and preferences

• Anonymous vehicles

• Template invites the elicitation of single-attribute value 

by the bisection technique and elicitation of scaling 

weights using the swings technique

• The Excel template also performs the additive model 

computations
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Second survey
- Mandatory and elicited values

• Mandatory and fixed set of 7 general alternatives (same 

unnamed brand and model assumed)

• Five mandatory criteria (other may be added)

  Price (€) Range (Km) Fuel consumption 
(€/100km) 

CO2Emissions 
(g/km) 

Privileges 
 

BEV 1 30.000 175 2,4 50 Yes 

BEV 2 29.000 175 2,4 50 No 

HEV 25.500 2+1200 6,5 110 No 

Gasoline 25.700 833 11,2 170 No 

Diesel 24.900 1300 6,3 130 No 

PHEV 1 28.500 20+1180 4,7 100 Yes 

PHEV 2 28.000 20+1180   4,7 100 No 
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First meeting between analyst and DM

• Stated preferences (best-worst): the DM ranks 3 

alternatives in each of 5 questions, e.g.:

The alternatives are a fractional factorial design for the following levels:
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Second meeting between analyst and DM

• Elicitation of value functions (bisection method 

suggested)
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Second meeting between analyst and DM

• Global value as a function of the scaling weights (swing 

weights recommended but template does not explicitly 

support this)

V(ai) = w1v1(ai) + w2v2(ai) +…+ wnvn(ai) 
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Second meeting between analyst and DM

• Opportunity to revise (stated ranking):

• Best-worst stated preference questions are repeated:
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Results
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Results

Q4: Do the holistic rankings agree with 

the elicited MCDA model?

Q5: Do the best-worst SP answers 

agree with the answers that would 

correspond to the elicited MCDA 

model?

Q6: Are the best-worst SP answers, 

before and after MCDA analysis, the 

same?

Kendall distances 
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Conclusions and work in progress

• The additive value function model is in general an 

adequate approximation for most of the cases

– Ranking less inconsistent than multiple choices

• MCDA model elicited in a fairly standard way does not 

match the holistic preferences

– Time to revise the model is essential

• The MCDA analysis seems to have influenced the 

(second set of) multiple choices (learning?)
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Conclusions and work in progress

• Three possibilities

• Inferring value functions 

after eliciting weights did not 

work well

• Need to support weight 

elicitation: trade-offs method

To infer all
parameters

To infer some 
parameters

and elicit other
parameters

To elicit all
parameters
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Thank you!


