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Outline  

• Human Reliability Analysis (HRA) 

– Some directions for current developments: enhance 
empirical basis and extend application domains 

• Why we like Bayesian Belief Networks (BBNs) for 
HRA 

– ... and some gaps 

• Quantification of the BBN relationships (the model 
parameters) 

– Need for expert judgement: in combination with 
(little) data and alone 

– The strategy: partial model elicitation & fill-up 
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Human Reliability Analysis (HRA)  

• Analysis of unsafe actions by personnel in socio-

technical systems, contributing to: 

• Unavailability of safety-relevant systems (e.g. errors during 

maintenance and test activities) 

• Initiation of accidents 

• Failure in the response to accidents 

• Aims: 

• Identify which unsafe actions may be committed 

• What factors may influence their commission 

• What is their likelihood (probability) 

• HRA is an important element of  

probabilistic risk assessment  

Focus on 

quantification : 

distinctive feature 

vs human factor 

analyses 
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HRA – general thinking 

• HRA to support:  

• Qualitative analysis: structure for the analysis of the factors that 

influence the performance (Performance shaping factors, PSFs) 

• Quantitative analysis: the “link” between the qualitative influences 

and the failure probability (Human Error Probability, HEP) 

HEP 

Adequacy of 

procedural guidance 

Clarity of indications 

Time available 

Number of 

simultaneous tasks 

… 

• One modelling issue:  

• the joint effect of PSFs is often assumed as the “sum” of 

individual effects.  But PSFs interact – amplification as well we 

compensatory effects 

Terminology, and 

models can be 

very, very 

different across 

methods 
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Some HRA trends, and BBNs 

• Interesting BBN features:  

• Formal integration into models of: cognitive theory, 
empirical data, expert judgment 

• Many factors (PSFs): dependent, interacting, 
“soft”/subjective  

• Probabilistic framework, compatible with probabilistic 
safety assessment  

 

• PSA and HRA to inform operational and regulatory 
decisions 

• Need to strengthen the scientific basis of models: 
empirical basis (data), connection with cognitive theory 

• Extension of applications to less traditional areas:  

• HRA for external events (e.g. fires, seismic), severe 
accident conditions (L2 PSA) 
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A literature review of BBN applications in HRA 

• Review questions: 

– How and why BBNs have been applied for HRA? 

– What approaches are generally used to buld the BBN models? 

– Research gaps? 

 

• 26 (2006-2013) studies were reviewed, applications for: 

– Modelling of Management and Organizational Factors (MOFs) 

– PSFs interactions  

– Dependence analysis 

– Extensions of existing HRA methods 

– Situation Assessemnt  

 

• Application fields: mostly nuclear, oil&gas, aviation 

L. Mkrtchyan et al. Bayesian Belief Networks for HRA: a review of applications 

and gaps, Reliability Eng. Sys. Safety, 2015 
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Review results – with emphasis on research gaps 

• Combination of empirical data and judgment  

– Typical approach: use data for some CPDs and 
judgment for the rest 

– How about integration in the same CPD?  

– Strengthen the empirical basis of judgment  

– reduce large uncertainty from data 

 

• Expert judgment for CPD assessment 

– Mostly elicited one-by-one: could be problematic 
and lead to traceability issues 

– A promising strategy: partial model elicitation & 
fill-up (some refs have used these but systematic 
investigation is missing) 

Formal approaches 

to improve empirical 

basis and regulatory 

acceptance 
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A BBN for quantification of errors of 

commissions 

Podofillini et al., Quantification of Bayesian Belief Net 

Relationships for HRA from Operational Event Analyses,  

PSAM 12, Honolulu, Hawaii, 22-27 June 2014 



   
  9    

Laboratory for  

Energy Systems Analysis  

 COST IS 1304 Wrokshop, Madrid 15-17 April 2015 

  

A BBN for EOC quantification 

• Errors of Commission (EOCs)  

– Inappropriate actions that aggravate the 
course of a scenario  
(e.g. Three Mile Island, 1979; Air Florida 90, 
1982; Operational events) 

– Extend the scope of standard PSA, 
focused on Errors Of Omission (EOOs) 

 

• CESA-q, Quantification module of 
PSI’s CESA method  

– Decisions driven by very specific 
factors (e.g., conflicting goals, 
misleading indications, multiple 
aggravating factors acting 
simultaneously)  

– Lack of empirical data  

 

 
•Database of 26 EOC events from experience 

•analyzed and quantified (Reer, 2009) 

•Situational and adjustment factors, e.g 

•verification difficulty 

• time pressure 

•benefit prospect 

• ... 
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The CESA-Q database (Reer, 2009) 
26 operational events involving EOCs (mostly 1990-1995) 

CESA-Q adjustment factors 

ID Event Title VH  VM VD VE TP BP DP PR EFI p(EOC│EFI) 

AE.2 Fire and Loss of Offsite Power 

(Diablo Canyon 1, 1995) 
1 1 1 0 1 1 1 1 H 7.2E-2 

AE.4 Loss of Coolant through RCS Hot 

Leg (Oconee 3, 1991) 
1 0.5 0.5 0 1 1 0 0 H 7.2E-2 

AE.5 Loss of Coolant through RHR 

Discharge Isolation Valve (Wolf 

Creek, 1994) 

0 0.5 0.5 0 1 1 0 0 EH 1.0 

MI.3 Reactor Overheating due to 

Degradation of Safety Injection 

(Ft. Calhoun, 1992) 

0.5  1 0.5 1 0.5 1 0 1 H 7.2E-2 

MI.4 Core Damage due to Termination 

of Safety Injection (TMI 2, 1979) 
0 0.5 0.5 1 0 0 0 1 VH 2.7E-1 

AD.2 Damage of High Pressure 

Injection Pumps (Oconee 3, 1997) 0.5 0.5 0.5 1 0.5 1 0 1 H 7.2E-2 

Error-Forcing Impact 

(EFI) 

Extremely high 

(EH) 

Very high 

(VH 

High  

(H) 

Low  

(L) 

Very low 

(VL) 

None 

(N) 

Mean Prob(EOC│EFI) 1 2.7e-1 7.2e-2 1.9e-2 5.2e-3 1.4e-3 

VH: Verification Hints  

VM: Verification Means 

VD: Verification Difficulty  

VE: Verification Effort 

TP: Time Pressure 

BP: Benefit Prospect 

DP: Damage Potential  

PR: Personal Redundancy  

0: Error Forcing 

0.5: Moderately Error Forcing 

1: Not error-forcing 
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This work: development of BBN for EOC quantification 

Verification 

Hints 

Verification 

Means 

Verification 

Difficulty 

Verification 

Effort 

Verification  

Benefit 

Prospect 

Damage 

Potential 

Benefit_ 

Damage  

Time 

Pressure 

Personal 

Redundancy  

Error Forcing 

Impact  

• Infer some model features from the operational event analyes 

– Derive the complete model by algorithm (Fenton et al., 2007) 

CESA-Q factor /  

BBN node   

States Label in 

BBN 

Verification Hints, 

Verification Means, 

Verification Difficulty 

Time Pressure 

0 (error-forcing) EF 

0.5 (moderately error-forcing) Mod_EF 

1 (not error forcing) NEF 

Verification Effort  

Benefit Prospect 

0 (error-forcing) and N/A EF 

1 (not error-forcing) NEF 

Damage Potential  

Personal Redundancy 

0 (not success-forcing) NSF 

1 (success-forcing) SF 

Verification  

(intermediate node) 

0 (error-forcing) EF 

0.5 (moderately error-forcing) Mod_EF 

1 (not error-forcing) NEF 

Benefit_Damage  

(intermediate node) 

0 (error-forcing) EF 

0.5 (neutral) Neutral 

1 (success-forcing) SF 

Error forcing impact  

(output node) 

Extremely high Ex High 

Very high Very high 

High High 

Low Low 

Very low Very low 
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Derivation of CPDs - Fenton et. al, 2009  

For each node, characterize the general effect of each influencing 

factor, by defining : 
 

• The weighted function (Mean, Minimum, Maximum or MixMinMax) 

• The weight of each influencing node (values from 1 to 5) 

• The uncertainty in the CPD (i.e. its variance) 

Example: Factor A is more important and its effect tends to 

dominate over B  

Weighted function: ‘Max’, weights: 5, 1 
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BBN runs on operational events 

• Generally increasing trend in BBN predictions 

 the BBN represents and distinguishes the different error forcing 

conditions, from low to high impact 

• Assessments from Reer, 2009 within the BBN 90% prediction bound 

• Underestimation and overestimation for very low and very high impacts, 

respectively 

 

Events ordered by decreasing probability from operational event analyses (Reer, 2009) 
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Fenton et al. 2009: discussion and conclusions 

• Partial model elicitation and fill-up algorithm investigated 

– avoids direct elicitation of many probabilities  

– Subjective determination of functions, weights, and variance   

– Stiff model response: treatment of strong parameters 
interactions   

• Our approach: inform model relationships from EOC database 

– Database evaluations independent of the BBN model 

– Can be reviewed and “validated” 

– Can be used on other algorithms for comparison of algorithm 
performance  
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The functional interpolation concept for BBN 

building 

Podofillini et al., Aggregating Expert-Elicited Error Probabilities to 

Build HRA Models, ESREL 2014, Wroklaw, Poland, 14-18 

September 2014 
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A BBN for a simplified HRA model 

 

Human-Machine  

Interface (HMI) 

Task complexity 

Human Error 

 Probability (HEP) 

Node States 

Human-Machine 

Interface  

(HMI) 

Strongly Success Forcing (SSF) 

Nominal (N) 

Less Than Adequate (LTA) 

Error Forcing (EF) 

Task Complexity  Very Low (VL) 

Nominal (N) 

Very High (VH) 

Input (parent) nodes: 

    Human-Machine Interface 

    SSF N LTA EF 

T
a

s
k

 

C
o

m
p

le
x

it
y
 

VL 
? ? ? ? 

N 
? ? ? ? 

VH 
? ? ? ? 

12 CPDs to determine 

State # State label Reference  

probability value 

Probability range 

1 Very high 1 > 3.2e-1 

2 High  1e-1 (3.2e-2, 3.2e-1) 

3 Moderate  1e-2 (3.2e-3, 3.2e-2) 

4 Low 1e-3 (3.2e-4, 3.2e-3) 

5 Very Low 1e-4 < 3.2e-4 

Output (child) node: 

1e-4 1e-3 1e-2 1e-1 1 

Very  

Low 

Very  

High 
Low Moderate High 
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Deriving missing relationships 

    Human-Machine Interface 

    SSF N LTA EF 
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s
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VL ? ? 

N ? ? ? ? 

VH ? ? 
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f 
x i

VL L M H VH
0

0.5
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f 
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VL L M H VH
0

0.5

1

Median HEP, x
i

P
ro

b
a
b
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 o

f 
x i

Anchor 2Anchor 1

Anchor 3 Anchor 4

Interpolation should progressively shift the CPDs along the factor state directions 

    Human-Machine Interface 

    SSF N LTA EF 

T
a

s
k

 

C
o

m
p

le
x

it
y
 VL Anchor 1 ? ? Anchor 2 

N ? ? ? ? 

VH Anchor 3 ? ? Anchor 4 
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Deriving missing relationships 

Low Very Low Moderate High Very High
0

0.1

0.2

0.3

0.4

0.5

0.6

HEP

P
ro

b
a

b
il

it
y

 o
f 

x
i

Single expert, anchor 3

Approximating function: Normal function 

    Human-Machine Interface 

    SSF N LTA EF 

T
a

s
k

 

C
o

m
p

le
x

it
y
 VL 1.2 ? ? 4.8 

N ? ? ? ? 

VH 3.5 ? ? 4.7 

    Human-Machine Interface 

    SSF N LTA EF 

T
a

s
k

 

C
o

m
p

le
x

it
y
 0.42 ? ? 0.42 

N ? ? ? ? 

VH 0.77 ? ? 0.32 

Minimizing the squared difference 
between N(μ, σ) and correponding CPD 

μ and σ for each anchor 

Linear interpolation across the anchors 
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Deriving missing relationships 

    Human-Machine Interface 

    SSF N LTA EF 

T
a

s
k

 

C
o

m
p

le
x

it
y
 VL 1.2 2.4 3.6 4.8 

N 2.4 3.2 4.0 4.8 

VH 3.5 3.9 4.3 4.7 

    Human-Machine Interface 

    SSF N LTA EF 

T
a

s
k

 

C
o

m
p
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x

it
y
 

0.42 0.42 0.42 0.42 

N 0.60 0.52 0.45 0.37 

VH 0.77 0.62 0.47 0.32 
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Discussion  

Conceptual approach presented 

Aggregate expert assessments into CPDs 

Use anchoring CPDs 

Approximate and interpolate rest of relationships 

Attractive features 

Flexibility: anchoring CPDs may come from different sources of data, as 
 long as they are appropriately aggregated 

Treatment of uncertainty: represents the different level of uncertainty possibly 
 characterizing different areas of the model 

Approximate and interpolate rest of relationships 

Issues 

Rapid (exponential) increase of required anchor CPDs 

Validation: anything goes within the anchors 



   
  22    

Laboratory for  

Energy Systems Analysis  

 COST IS 1304 Wrokshop, Madrid 15-17 April 2015 

  

Current work 

Evaluation of methods/algorithms for limited model elicitation 

- representation of strong factor influences and of factor interactions  

- representation of uncertainty on the BBN relationships 

- requirements as the BBN dimension increases  

Five methods under analysis 
 

- The functional interpolation (Podofillini  et al. 2014) 
- Wisse et al. 2008.  
- The Cain Calculator (Cain, 2001) 
- Fenton et al. 2007  
- Røed et. al. 2009 
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Current 

work 

 

TC 

TP=VL TP=Nominal TP=VH 

HMI HMI HMI 

     SSF         Nom        LTA        EF    SSF            Nom        LTA        EF      SSF        Nom        LTA        EF 
 

VL 

 

 

 
Nom 

 

 

 

VH 
   

 (a) The functional interpolation approach 

 

VL 

 

 

 
Nom 

 

 

 

VH 

    

 (b) EBBN approach 
 

VL 

 

 

 
Nom 

 

 

 

VH 
   

 (c) Cain Calculator 

 
VL 

 

 

 
Nom 

 

 

 

VH 
   

 (d)     Fenton et al. approach 

 

 

VL 

 

 

 
Nom 

 

 

 

VH    
(e)      Røed et al. approach (anchors from the functional interpolation approach) 
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Current 

work 

Strong influence of 

one factor: 

 

“If HMI is error 

forcing, error 

probability is 

always high” 

 

TC 
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Current 

work 

Interaction of two 

factors: 

 

“If Tast complexitiy 

and time pressure 

are high. error 

probability is 

always high” 
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Conclusions 

Interesting times ahead for HRA  

Several initiatives to collect data (simulated) 

Need for expert judgment will not decrease 

Strengthen empirical basis is not just collecting data  

Issues under investigation 

Data: collection and interpretation 

Connection between rich qualitative analyses and quantitative models  

Promising for models with many, interacting, “soft” factor 

BBNs 

Use data as much as possible 

Limit subjectivity: build models from limited, traceable, reviewable judgments  

Open PhD position 
(Polytechnic of Zürich, ETH) 


