Handling Equitable Preferences

Özlem Karsu

Bilkent University, Ankara, Turkey

Alec Morton

University of Strathclyde, Glasgow, UK

Nikos Argyris

Loughborough University, UK

Outline

- What is the problem we focus on?
- Equitable preferences
- Using preference information from policy makers

Problems we focus on

Evaluating a set of distributions (of income, of wealth, of health, of service levels) across a population, in which individuals are considered preferentially indistinguishable

The planner has equity concerns as well as efficiency concerns.

Problems we focus on

Finding the best distribution

Ranking

An example problem

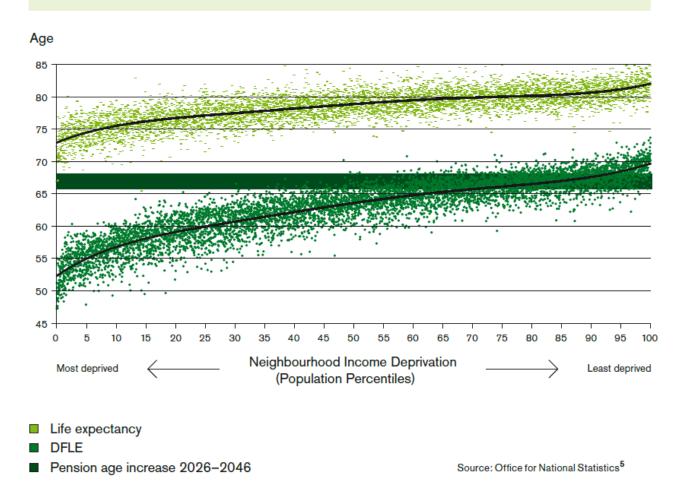
Health Economics (Finding the best QALY allocation profile)

Project	Group 1	Group 2	Group 3
1	10	30	40
2	25	15	25
3	5	50	50
4	15	15	35
5	30	40	10

An example problem

Health Economics (Finding the best QALY allocation profile)

Project	Group 1	Group 2	Group 3
1	10	30	40
2	25	15	25
3	5	50	50
4	15	15	35
5	30	40	10


Many countries, including Turkey, use universal health insurance programs.

Many advantages but also many challenges.

Tighter and tighter budgets:

Not possible to include all the health technologies in the program. Hard to decide which services will be included.

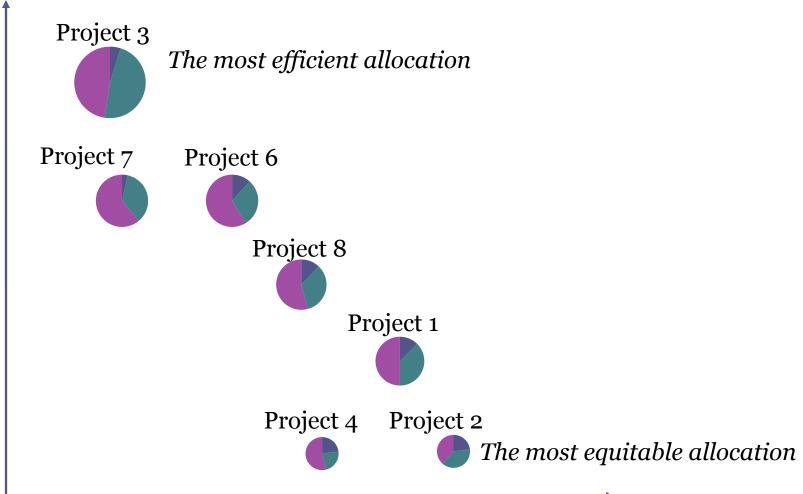
Figure 1 Life expectancy and disability-free life expectancy (DFLE) at birth, persons by neighbourhood income level, England, 1999–2003

Handling equity

Developing good decision support tools to

- find solutions that would be acceptable to many inequity-averse social planners.
- determine the most preferred solution of the social planner among these solutions.

Mathematical modelling Multicriteria decision making


In health care domain: More transparent, fair and scientificly sound decisions.

A decision support system that:

- helps the policy makers decide which services (or health technologies) to offer.
- evaluates the healthcare projects considering both efficiency and equity concerns.

Equitable preferences

Efficiency •

Equity/Fairness

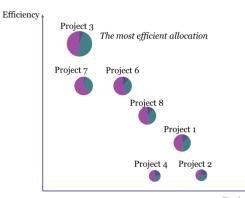
Properties of equitable preferences

Assume that the more the outcome level, the better.

Anonymity

Project	Group 1	Group 2	Group 3
1	10	30	40
2	25	15	25
3	5	50	50
4	15	15	35
5	30	40	10

Properties of equitable preferences

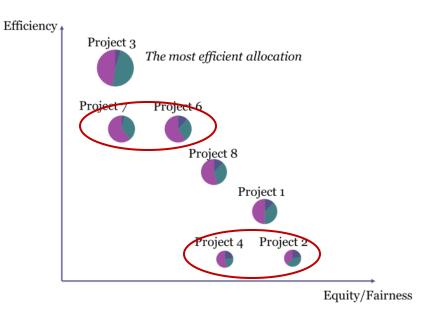

Assume that the more the outcome level, the better.

Anonymity

Project	Group 1	Group 2	Group 3
1	10	30	40
2	25	15	25
3	5	50	50
4	15	15	35
5	30	40	10

Pigou-Dalton Principle of Transfers

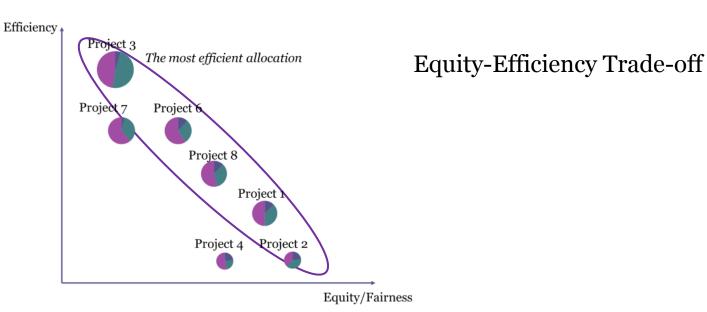
Project	Group 1	Group 2	Group 3
1	10	30	40
2	25	15	25
3	5	50	50
4	15	15	35
5	30	40	10



Equity/Fairness

Equitable Dominance

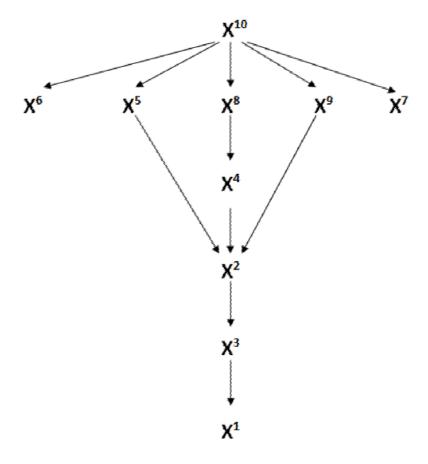
- Rational social planner
- Anonymity, PD transfers


An allocation is equitably dominating another if it is more preferred by all SPs having an equitable preference model

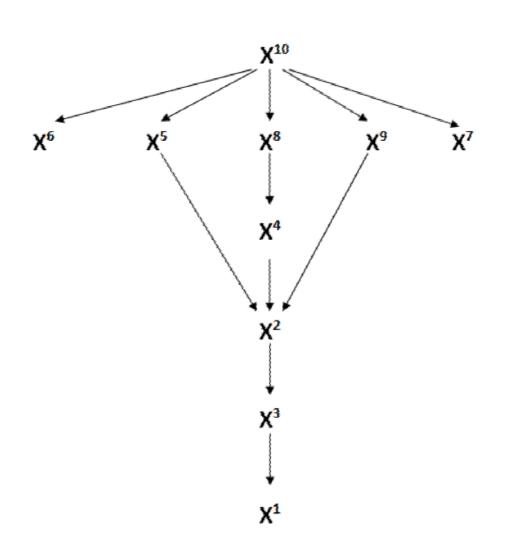
Equitable Dominance

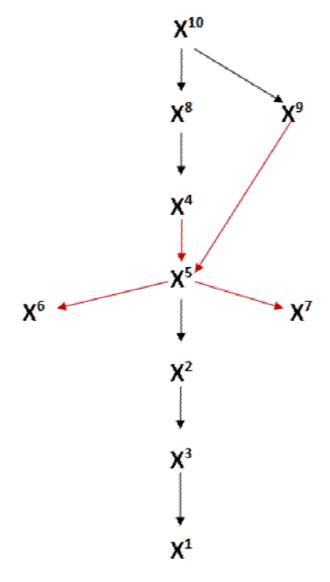
- Rational social planner
- Anonymity, PD transfers

An allocation is equitably dominating another if it is more preferred by all SPs having an equitable preference model

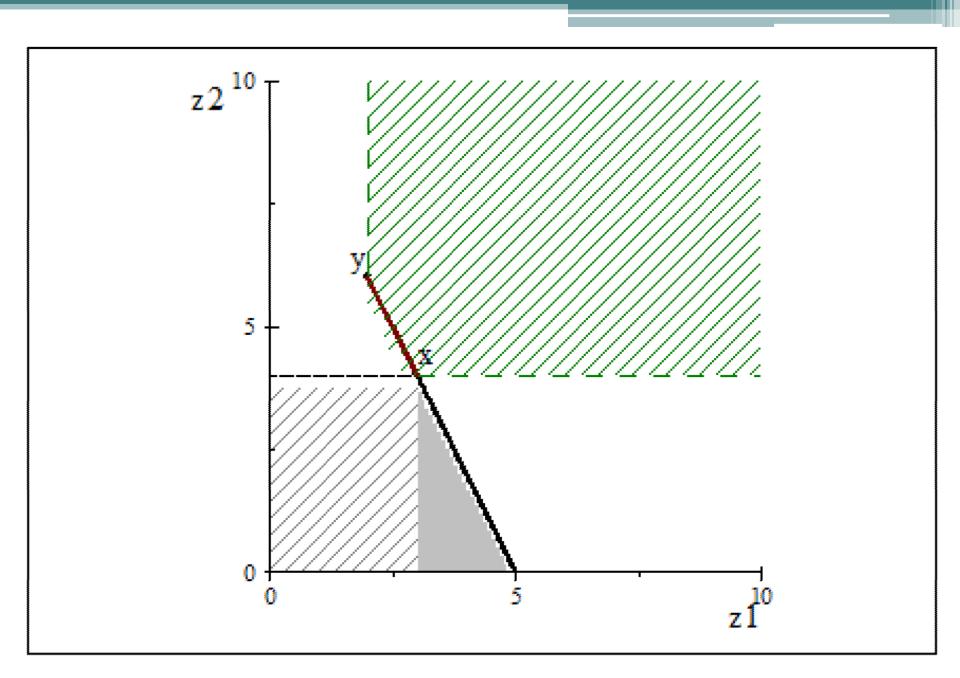

Approach

- Get preference information from the social planner
- Use tractable mathematical models (LPs) to check whether an alternative distribution is better than another
- Refine the ranking accordingly


Example


```
Alternative
               (x)
              (1,2)
x_1
              (3,2)
 x_2
              (2,2)
X3
              (4,3)
 X4
              (2,6)
X5
             (8,0.5)
X6
             (0,10)
X7
            (3.5, 3.5)
X8
             (5,2.5)
X9
              (6,4)
X10
```

Example


Introduce preference information: $x_4 \succ x_5$.

Initial Quasiordering

Updated Quasiordering

Computational Challenges

Elicited information: $(2,6) \succ (3,4)$

Symmetry:

$$(2,6) \succ (4,3)$$

$$(6,2) \succ (3,4)$$

$$(6,2) \succ (4,3)$$

Conclusions

Increasing informed decision making in health care resource allocation is important:

Health care:

- is relevant to almost every member of the society
- has significant consequences on peoples' wellbeing.

Future Work: Expert Jugdement in Healthcare

More to be done in:

- Determining consequences (performance scores) of healthcare projects.
- Expert judgement may have to be used in order to estimate these parameter values.
 - Lack of data collection
 - Constraints hindering evidence-based data collection

- Elicitation and aggregation of expert judgements in health technology assessment and health care resource allocation domains.
- Integration of expert judgements into the decision support systems in a *structured*, *transparent* and *scientific* way.

Future Work: Multidimensional Equity

More to be done in:

Handling equity concerns in multiple dimensions.

Thank you