Decision rules for allocation of finances to Health Systems Strengthening

Alec Morton Ranjeeta Thomas, Peter C Smith

In historical context

"Horizontal" approaches – focus on the system

What is the "health system"?

- Service delivery: packages; delivery models; infrastructure; management; safety and quality; demand for care
- Health workforce: national workforce policies and investment plans; advocacy; norms, standards and data
- Information: facility and population based information and surveillance systems; global standards, tools
- Medical products, vaccines and technologies: norms, standards, policies; reliable procurement; equitable access; quality
- Financing: national health financing policies; tools and data on health expenditures; costing
- Leadership and governance: health sector policies; harmonization and alignment; oversight and regulation

WHO (2007) "Strengthening health system to improve health outcomes"

"The level of understanding, the sophistication of the evidence, the strength of the measures, and the credibility of strategies and interventions to strengthen health systems remain at a very primitive state and it's frustrating that we're not advancing more quickly on these fronts..."

Hafner and Schiffman (2013), quoting a "senior WHO official with long-standing involvement in health systems research"

How do cost-effectiveness analysis for HSS interventions?

- HSS interventions are complementary with vertical programmes
 - Better trained staff can deliver treatments at higher levels of quality
 - Improved public health surveillance can allow for better targetting of interventions
 - Improved management can prevent loss and pilferage of commodities

Qualitative results

- This programme is
 - Non-linear
 - Non-convex
- But for each cluster, at optimality
 - There is a "critical project"
 - Everything funded in that cluster has ICER better than the ICER of the critical project
 - Everything not funded in that cluster has ICER worse than the ICER of the critical project

Algorithmic results

- When there is only one cluster...
 - Eg we are trading off between strengthening the malaria system vs bednets, spraying etc
- ... the problem can be solved by hand
 - Check out "whole number allocations" where all projects are funded or not
 - Check out "fractional allocations" where there is a single critical project and all other projects are funded or not
- This is *O(n)* complexity where n is the number of projects

Worked example with one cluster

Intervention	Cost per	Total Cost	Number of	Ratio of
	HIV infec-	(US\$)	infections	benefits to
	tion averted		averted	costs (cost-
	(US\$2002)			effectiveness)
	1	2	3	4
Peer group educationsex	16	39,575	2473	0.0625
workers				
Safe blood transfusion	84	50,000	595	0.0119
Peer group educationy-	530	423,500	799	0.00189
oung people				
Mass media and social	534	1,300,000	2434	0.00187
marketing of condoms				
Peer group educationhigh	580	500,000	862	0.0017
risk men				
Targeted AZT to pregnant	939	300,000	319	0.0011
women				
Voluntary testing	1190	310,000	261	0.0008
Targeted advice for breast	2424	150,000	62	0.00041
feeding		,		
Targeted treatment of	2748	560,000	204	0.00036
STIS				

Table 1: Data for HIV prevention programmes

HSS investment as gamma varies

- Peer group education—sex workers
- Safe blood transfusion
- Peer group education—young people
- Mass media and social marketing of condoms
- Peer group education—high risk men
- Targeted AZT to pregnant women
- Voluntary testing
- Targeted advice for breast feeding
- Targeted treatment of STIs

Worked example with 3 clusters*

Table 4: Data for HIV, TB and Malaria example

Intervention	Target popula- tion	Unit Cost of inter- vention (US\$)	Total Cost (US\$)	\$ per DALY	Adherence	DALYS averted	Ratio of benefits to costs (cost- effectiveness	3)
	1	2	3	4	5	6	7	
			HIV					
Testing	1,700,000	17	$28,\!900,\!000$	38.27	0.39	$294{,}512.67$	0.0102	
ART first line	500,000	511	255,500,000	451.50	0.80	452,713.18	0.0018	
treatment								
			\mathbf{TB}					
DOTS treat- ment	20,000	755	15,100,000	132.96	0.95	107,889.59	0.0071	
Diagnosis	140,000	9.98	1,397,200	126.35	0.34	3,759.78	0.0027	
MDR-TB treat-	100	7,595	759,500	521.96	0.80	1,164.07	0.0015	
ment								
Malaria								
Treatment with ACTs	5,000,000	2.03	10,150,000	13.91	0.60	437,814.52	0.0431	* Solved
Intermittent	945,000	0.30	283,500	25.68	0.40	4,415.89	0.0156	computationally
preventive	-		*			-		in Matlah
treatment in								
pregnancy (IPTp)								

Nonconvexities can give counterintuitive results

Is this the right decision rule for donors?*

- Donor which can supply \$1m to country to prevent HIV infections
- Country considers that spending more than \$300 of its domestic resources to avert a single HIV infection is not good value for money

•	Donor proceeds		Total Cost \$	Number infections averted	Cost per HIV infection prevented (US\$, 2002)
	down the	1. Peer group education—sex			
	list in CF	workers	39,575	2473	16
	order	2. Safe blood transfusion	50,000	595	84
		3. Peer group education—			
•	\$1.000.000	young people	423,500	799	530
		4. Mass media and social	4 200 000	2.42.4	52.4
	will be	marketing of condoms ****	1,300,000	2434	534
	spent on	5. Peer group education—	500.000	062	500
Η̈́ν	6. Targeted AZT to pregnant	500,000	862	580	
	nrevention	women	300,000	319	939
	prevention	7. Voluntary testing	310,000	261	1190
	and 4,779	8. Targeted advice for breast			
	infections	feeding	150,000	62	2424
	will be averted	9. Targeted treatment of STIs	560,000	204	2748

- Suppose subsidise interventions to make them CE for Country?
- Country spends its own funds on interventions 1 and 2

		Number			Donor \$/	
	Original Total	infections	Donor	Subsidised	infection	
	Cost Ş	averted	contribution \$	cost	averted	
3.Peer group						
education—						The total amount of
young people	423,500	799	183,800	239,700	230	investment by both D
4. Mass media						
and social						and C is therefore
marketing of						\$2,313,075 and the
condoms	1,300,000	2434	569,800	730,200	234	total number of
5. Peer group						infactions avorted is
education—						infections averted is
high risk men	500,000	862	241,400	258,600	280	7,163.
6. Targeted AZT						
to pregnant						
women	300,000	319	204,300	95,700	640	
7. Voluntary						
testing	310,000	261	231,700	78,300	888	
8. Targeted						
advice for						
breast feeding	150,000	62	131,400	18,600	2119	
9. Targeted						
treatment of						
STIs	560,000	204	498,800	61,200	2445	

Conclusion

- Assessing the influence of investment in HSS on vertical programmes seems the only way to do economic analysis
 - Finding empirical data to estimate function is a challenge
- Dynamics of investment in HSS can be counterintuitive
 - Individual items may enter and leave optimal portfolio as budget increases
- Maybe decision rules for donors aren't the same as decision rules for countries

Thank you