Progress with Out of Sample Validation

Roger M. Cooke, Abby Colson RFF, U of Strathclyde Aug 28, 2015

Classical Model (1991)

- In addition to vbls of Interest, Experts give quantiles on seed vbls FROM THEIR FIELD [~10] whose values are known post hoc
- Experts scored wrt calibration (statistical accuracy) and informativeness
- Performance based weights (PW) (asymptotic strictly proper scoring rule) compared with Equal Weights (EW)
- Data sets from ~ 100 studies available

Contracting				Reference
Party	Performed by	Study name	Subject	nr
		Arkansas		0 1
		Florida		5.1
		Illinois	Grant effectiveness, child health insurance	
Robert Wood		Nebraska	enrollment	
Johnson		Washington		
Foundation	Center for	CoveringKids		
	Disease	Tobacco	Grant effectiveness tobacco control	9.2
	Dynamics,	Obesity	Grant effectiveness childhood obesity	5.2
Disease Control	Policy	Eistula	Effectiveness of obstatric fistula repair	3.20
Priority Project	roncy	Fistuid	chectiveness of obstetric listula repair	3.23
3 rd Edition		San_Diego	Effectiveness of surgical procedures	
Center for				
Disease Control		CDC ROI	Return on investment for CDC warnings	
and Prevention		-		9.3
U Wisconsin,		Create	Tarrarian	3.25, 3, 26,
CREATE	V. Bier	Create	Terrorism	3,27
	II Notro Dama	Erie_Carp	Establishment of Asian Carp in Lake Erie	3.9, 3.22,
NOAA, EFA	O NOU'E Dame	GL_NIS	Costs of invasive species in Great Lakes	
FPA U Maryland	B. Koch. U Maryland	UMD_NREMOVAL	Nitrogen removal in Chesapeake Bay	3.28
SANGUIN, UMC	M. Janssen.			4.7.4.8.
Utrecht	UMC	Hemopilia	Hemophelia	4.9, 4.10
National		ATCEP	Air traffic Controllers Human Error	
Public Health				
and the	TU Delft	FCEP	Flight Crew Human Error	7.5
Brand Breventie		Daniela	Fire prevention and control	1.11
Liandor		Liander	Underground castiron gas-lines	4.11
Liander.		Arconio	Air quality levels for arranic	
		Arsenic	Air quality levels for arsenic	
		Biol_Agent	agents	
		CWD	Infection transmission risks: Chronic Wasting	3.19; 3.20;
			Disease from deer to humans	3.21
		eBPP	XMRV blood/tissue infection transmission risks	3.18; 3.24
	W. Aspinall	IceSheets	Contribution to sea level rise from Ice Sheets melting due to global warming	7.1
		PHAC T4	Additional CWD factors	3.21
	-	Sheen	Risk management policy for sheep scab control	
		Succe	Volcano hazards (Vesuvius & Campi Flegrei	
		SPEED	Italy)	2.6; 2.7
		TdC	Volcano hazards (Tristan da Cunha)	
		TOPAZ	Tectonic hazards for radwaste siting in Japan	6.16
New				
Zealand Earthq	М.	Gerstenherger	Seismic bazard modeling Christohurch	
uake Forecast	Gerstenberger	Geistenberger	Seismic nazaru modeling Unristenuren	
Testing Centre				7.2,7.3,7.4
Embry-Riddle	Goodheart	Goodheart	Airport safety	

33 Applications post 2008

Combined score (calibration * information) Performance & Equal Weights

post 2008

pre 2008

In-sample validation 2.5 2 1.8 2 1.6 1.4 1.5 1.2 PW PW 1 0.8 0.6 0.5 0.4 0.2 2.5 1.5 2 0 0.5 0 0.5 1.5 1 EW 2 EW 0

Averaging Quantiles? (Lichtendahl et al 2013)

F and *G* : CDFs from experts 1 and 2; *f*, *g* densities. *HW*, hw = CDF and density of the result of averaging the quantiles of *F*, *G*. Then

$$HW^{-1}(r) = \frac{1}{2} (F^{-1}(r) + G^{-1}(r)).$$

$$1/hw(HW^{-1}(r)) = \frac{1}{2} \left(\frac{1}{f(F^{-1}(r))} + \frac{1}{g(G^{-1}(r))} \right),$$

2

 $(1/f(F^{-1}(r)) + 1/g(G^{-1}(r)))$

= *Harmonic Mean*

The harmonic mean of 0.01 and 0.99 is 0.0198. Consider a flexible and tractable class of distributions on [0,1] (a>1, b>0):

	PW										
	cal	inf	comb	cal	inf	comb	cal	inf	comb	#seeds	#exprts
Arkansas	0.499	0.337	0.168	0.386	0.198	0.076	5.55E-02	0.640	3.55E-02	10	4
Arsenic D-R	0.036	2.739	0.098	0.061	1.095	0.067	7.99E-04	1.324	1.06E-03	10	9
ATCEP Err	0.683	0.227	0.155	0.124	0.247	0.031	5.99E-04	1.066	6.38E-04	10	5
Biol agents	0.678	0.610	0.414	0.413	0.244	0.101	3.60E-02	0.884	3.18E-02	12	12
CDC ROI	0.720	2.305	1.660	0.233	1.230	0.286	7.56E-01	1.565	1.18E+00	10	20
CoveringKi	0.720	0.431	0.310	0.628	0.274	0.172	9.03E-01	0.595	5.38E-01	10	5
CREATE	0.394	0.276	0.109	0.061	0.207	0.013	2.77E-04	0.52	1.44E-04	10	7
CWD	0.493	1.215	0.598	0.474	0.930	0.441	7.07E-01	1.494	1.06E+00	10	14
Daniela	0.554	0.634	0.351	0.533	0.168	0.089	1.82E-01	0.520	9.48E-02	7	4
dcpn_fistula	0.119	1.309	0.156	0.059	0.622	0.037	8.78E-08	1.125	9.88E-08	15	14
eBBP	0.833	1.406	1.172	0.358	0.316	0.113	8.04E-02	0.954	7.67E-02	8	14
EffusiveEruj	0.664	1.123	0.745	0.286	0.796	0.228	2.65E-02	1.505	3.99E-02	15	10
Erie Carps	0.661	0.856	0.566	0.182	0.281	0.051	3.87E-01	0.754	2.92E-01	8	5
FCEP Error	0.664	0.574	0.381	0.222	0.099	0.022	1.75E-05	0.771	1.35E-05	10	8
Florida	0.756	1.133	0.857	0.756	0.455	0.344	6.98E-02	0.880	6.15E-02	10	7
GL-NIS	0.928	0.209	0.194	0.044	0.307	0.014	5.53E-02	0.842	4.66E-02	14	12
Gerstenberg	0.9302	1.095	1.018	0.6439	0.4815	0.31	8.10E-02	0.9659	7.82E-02	13	9
Goodheart	0.707	0.959	0.678	0.550	0.277	0.153	0.683	0.8884	6.07E-01	10	6
Hemophilia	0.312	0.494	0.154	0.254	0.202	0.051	3.12E-01	0.779	2.43E-01	8	18
IceSheet201	0.399	1.552	0.620	0.492	0.517	0.254	7.96E-02	1.201	9.56E-02	11	10
Illinois	0.337	0.647	0.218	0.620	0.264	0.163	2.37E-03	0.793	1.88E-03	10	5
Liander	0.228	0.524	0.120	0.228	0.484	0.111	2.81E-03	1.198	3.36E-03	10	11
Nebraska	0.033	1.447	0.048	0.368	0.695	0.256	2.40E-05	1.192	2.86E-05	10	4
Obesity	0.440	0.507	0.223	0.070	0.243	0.017	6.68E-04	0.745	4.98E-04	10	4
PHAC T4	0.178	0.351	0.062	0.298	0.211	0.063	1.64E-02	0.640	1.05E-02	13	10
San Diego	0.155	0.758	0.117	0.147	1.012	0.148	1.95E-03	1.545	3.02E-03	10	7
Sheep Scab	0.643	1.310	0.843	0.661	0.780	0.516	1.15E-02	1.411	1.63E-02	15	14
SPEED	0.676	0.777	0.525	0.517	0.751	0.389	2.97E-02	1.165	3.46E-02	16	14
TdC	0.989	1.256	1.242	0.166	0.364	0.060	1.24E-02	1.079	1.34E-02	17	18
Tobacco	0.688	1.062	0.730	0.200	0.451	0.090	2.11E-01	0.708	1.49E-01	10	7
Topaz	0.411	1.455	0.598	0.629	0.922	0.580	8.66E-05	1.528	1.32E-04	16	21
umd_nremo	0.706	1.988	1.404	0.068	0.804	0.054	2.40E-03	1.219	2.93E-03	11	10
Washington	0.200	0.724	0.145	0.155	0.529	0.082	4.2E-01	0.862	3.63E-01	10	5
nr < 0.05	2			1			18				
nr best			26			3			4		
Ave Inf		1.042			0.531			1.0761			

Summary In-sample performance

Geomean ratios (row/col) of combined scores for all post 2008 studies									
	NoOpt	EW	PWg	Pwi	BE	2ndBE	HW		
NoOpt	1.000	1.700	0.523	0.453	0.911	0.894	19.183		
EW	0.588	1.000	0.308	0.266	0.536	0.526	11.283		
PWg	1.911	3.249	1.000	0.865	1.740	1.708	36.657		
Pwi	2.210	3.757	1.156	1.000	2.012	1.975	42.391		
BE	1.098	1.867	0.575	0.497	1.000	0.982	21.065		
2ndBE	1.119	1.902	0.585	0.506	1.019	1.000	21.461		
HW	0.052	0.089	0.027	0.024	0.047	0.047	1.000		

Out of Sample Validation?

- 1. Conundrums in Literature ROAT & CODE
- 2. Cross-Validation
- 3. New data
- 4. Explaining OoS Validity

ROAT : Remove-One-at-a-Time

- Expert 1 P_{heads} = 0.8 Expert 2 P_{heads} = 0.2
- Weights w₁/w₂ = likelihood ratio Ex1 / Ex2
 N Heads & N Tails,

```
LR = 0.8^{N} \times 0.2^{N} / 0.2^{N} \times 0.8^{N} = 1.
```

```
Remove one H, LR = 0.2/0.8 = \frac{1}{4} = \frac{w_1}{w_2}

P<sup>DM</sup> heads = (1/5) \times 0.8 + (4/5) \times 0.2 = 0.32.

P<sup>DM</sup> tails = 0.32.

P<sup>DM</sup> heads used to predict Heads

P<sup>DM</sup> tails used to predict Tails
```

N=10, LR PW/EW = $(0.32/0.5)^{10} = 0.012$.

Lin and Cheng (2008) examined 28 of the 45 studies and found PW significantly out performing EW, although PW's out-of-sample performance was degraded. **Lin and Cheng (2009)** used ROAT on 40 studies finding no significant difference between PW and EW. These publications do not report that their code has been vetted against EXCALIBUR, and there are very large differences between Lin and Cheng 2008 and Cooke and Goossens 2008

	Lin&Cheng study	Lir Pa	a & Cheng arameters	TUD Calbr Vbls / eff nr	Lin and 2008, 7 ''within	l Cheng Fable 1 sample''	Cooke and Goossens 2008 Table 1		
	NAME	# expert	#calibration vbls		PWComb	EWComb	PWComb	EWComb	
1	Acrylonitrile	7	10	Same	0.47	0.44	0.764	0.423	
3	Dike ring	17	47	Same	0.42	0.03	0.2456	0.03768	
4	Flanges	10	8	Same	0.6	0.2	0.905	0.4274	
5	Crane risk	8	10	12/11	0.93	0.28	1.148	0.345	
6	Groundwater	7	10	Same	0.95	0.05	2.106	0.158	
7	Space debris	7	26	26 /18	6.0E-06	0.13	0.25	0.14	
8	Composite materials	6	12	Same	0.55	0.21	0.39	0.111	
10	Dry deposition	8	14	Same	0.48	0.003	0.697	0.001	
11	Atmospheric dispersion	8	23	Same	0.38	0.18	0.9785	0.129	
12	Early health effects	7/9	15	Same	0.06	0.01	0.0496	0.01153	
14	Soil transfer	4	31	Same	1.0E-06	1.0E-07	1.0E-04	9.7E-05	
15	Wet deposition	7	19	Same	0.11	0.002	0.113	0.00073	
20	Movable barriers	8	14 <	Same	0.06	0.13	0.535	0.125	
21	Real estate	5	31	Same	0.7	0.001	0.6296	0.0009	
22	River dredging	6	8	Same	0.54	0.18	0.447	0.185	
23	Sulpher trioxide	4	7	Same	2.53	0.3	0.547	0.294	

The out-of-sample code of **Flandoli et al (2011)** has errors in optimization and scaling. Two of the 4 cases analysed had 15 and 16 calibration variables, enabling comparison with results from the Eggstaff code. Flandoli et al draw 500 random samples from training sets of fixed size and compute the scores on the complementary tsest set. The EW scores agree reasonably, but the PW scores do not.

			PW		EW			
		Sa	Inf	Comb	Sa	Inf	Comb	
Pbearl	Eggstaff	0.149	0.617	0.072	0.271	0.167	0.046	
8 training, 7 test	Flandoli Table 8	0.229	0.407	0.093	0.273	0.167	0.046	
Vesuvius	Eggstaff	0.277	1.176	0.240	0.520	0.756	0.383	
8 training 8 test	Flandoli Table 4	0.449	0.896	0.377	0.519	0.720	0.365	

ROAT Used by

- Cooke, R.M. (2008) Special issue on expert judgment, Editor's Introduction Reliability Engineering & System Safety, 93, Available online 12 March 2007, Volume 93, Issue 5, May 2008, Pages 655-656.
- Clemen, R.T (2008)" Comment on Cooke's classical method" Reliability Engineering & System Safety, Volume 93, Issue 5, May 2008, Pages 760-765
- Lin, Shi-Woei, and Bier, V.M. (2008) "A Study of Expert Overconfidence" Reliability Engineering & System Safety, 93, 775-777, Available online 12 March 2007. Volume 93, Issue 5.
- Lin, Shi-Woei, Cheng, Chih-Hsing (2008) "Can Cooke's Model Sift Out Better Experts and Produce Well-Calibrated Aggregated Probabilities?" Department of Business Administration, Yuan Ze University, Chung-Li, Taiwan Proceedings of the 2008 IEEE IEEM
- Lin, Shi-Woei, Cheng, Chih-Hsing (2009) "The reliability of aggregated probability judgments obtained through Cooke's classical model", Journal of Modelling in Management, Vol. 4 Iss: 2, pp.149 – 161,
- Shi-Woei Lin, Ssu-Wei Huang, (2012) "Effects of overconfidence and dependence on aggregated probability judgments", Journal of Modelling in Management, Vol. 7 Iss: 1, pp.6 22
- Cooke, R.M. (2012) "Pitfalls of ROAT Cross Validation Comment on Effects of Overconfidence and Dependence on Aggregated Probability Judgments", Journal of Modelling in Management, vol.7, nr. 1, pp 20-22, ISSN 1746-5664.

CROSS Validation

- Cooke, R.M., (2008) Response to Comments, Special issue on expert judgment Reliability Engineering & System Safety, 93, 775-777, Available online 12 March 2007. Volume 93, Issue 5, May 2008.
- Flandoli, F. Giorgi W.P. Aspinall, W. and Neri A (2010). "Comparing the performance of different expert elicitation models using a cross-validation technique" appearing in Reliability engineering and System Safety.
- Eggstaff, J.W., Mazzuchi, T.A. Sarkani, S. (2014) The Effect of the Number of Seed Variables on the Performance of Cooke's Classical Model, Reliability Engineering and System Safety 121 (2014) 72–82.
- Burgman, M. et al (20??) Intelligence Game, IARPA shoot-out

Out-of-sample Cross Validtion

- N seed vbls
- K < N training set; N-K test set
- WHICH K?
- K small, low power to resolve experts
- K large, low power to resolve DM
- K = N-1, ROAT bias
- K = N/2...all k-tuples Law of Large Numbers??

Eggstaff et al

- For K = 1....#seeds = N;
 - Initialize on EACH training sets size K
 - Score PW and EW on each test set
 - For given K average PW and EW scores
- Aggregate over all K by
 - Arithmean of PW-EW [affected by statistical power loss as K ↗]
 - Geomean of PW/EW [better, dimensionless]

%(PW > EW) = 73% (Eggstaff et al)

Average over all studies per % training set size of the average *PWSa* and average *EWSa*

% calibration variables in training set

Average over all studies per % training set size of the average *PWInf* and average *EWInf*

% calibration variables in training set

% calibration variables in training set

PWCombEWComb

Geomean(AvPWComb/AvEWComb) over all studies

% calibration variables in training set

Variance of experts' combined score

Overall variance in experts' combined score

Geomean(WgtdExpVar)

Biol_Agents

Left, differences of combined scores for *PW* and *EW* for all training sets, from size 1 to size 10. Right, combined scores of *PW* and *EW* averaged per training set size,

PWComb-EWComb

San Diego

Left, differences of combined scores for *PW* and *EW* for all comparisons, from size 1 to size 11; Right, combined scores of *PW* and *EW* averaged per training set size,

	Training set size as percent of calibration variables									
	10%	20%	30%	40%	50%	60%	70 %	80%	90%	Geomean
Arkansas	1.132	1.256	1.523	1.382	1.423	1.322	1.306	1.404	1.718	1.376
Arsenic	1.039	1.035	1.073	1.117	1.293	1.431	1.722	1.874	1.961	1.352
ATCEP	1.955	1.677	1.380	1.455	1.166	1.149	1.156	0.997	0.799	1.262
Biol_Agent	1.278	1.280	1.217	1.373	1.477	1.453	1.676	2.008	2.405	1.536
CDC_ROI	1.006	1.199	1.112	1.229	1.004	1.109	1.107	1.305	1.399	1.157
CoveringKids	1.032	1.510	1.407	1.478	1.487	1.463	1.517	1.538	1.427	1.420
Create	0.890	0.789	0.763	0.817	1.046	1.277	1.278	1.331	1.142	1.014
CWD	1.328	0.980	1.031	0.907	0.812	0.729	0.708	0.680	0.756	0.862
Daniela	1.051	1.051	1.086	1.099	1.137	1.137	1.815	1.721	1.721	1.279
Fistula	0.262	0.964	0.918	1.039	1.147	1.354	1.362	1.426	1.910	1.037
eBPP	1.859	1.844	2.027	1.778	2.402	2.576	2.727	2.958	4.033	2.384
Eff_Erup	0.965	0.903	0.903	0.796	0.651	0.664	0.892	0.892	0.919	0.835
Erie_Carp	2.920	2.612	2.684	2.567	1.856	1.787	2.047	2.017	2.909	2.339
FCEP	3.843	7.704	7.704	7.908	8.897	8.826	7.485	7.485	5.713	7.091
Florida	0.920	0.445	0.657	0.695	0.750	0.886	0.979	1.364	1.412	0.851
Gerstenberger	1.056	1.183	1.152	1.683	1.651	1.670	1.562	1.501	1.604	1.431
GL_NIS	2.177	1.847	1.672	1.477	1.186	1.134	1.066	1.024	0.809	1.316
Goodheart	1.180	1.291	1.595	1.441	1.366	1.480	1.611	2.136	2.607	1.586
Hemopilia	1.638	2.019	2.019	1.862	2.938	1.534	1.476	1.476	2.808	1.913
IceSheets	1.266	0.861	0.867	0.814	0.850	0.779	0.807	0.880	0.903	0.883
Illinois	0.671	0.697	0.821	0.798	0.867	1.126	1.407	1.800	2.484	1.073
Liander	0.881	0.746	0.488	0.614	0.669	0.780	0.870	0.788	0.575	0.700
Nebraska	0.559	0.340	0.389	0.517	0.692	0.978	1.393	1.733	1.892	0.789
Obesity	3.569	2.383	2.430	2.105	1.842	1.586	1.361	1.267	1.815	1.945
PHAC_T4	1.057	0.833	0.709	0.650	0.853	0.974	1.106	1.195	1.180	0.931
San_Diego	0.273	0.327	0.516	0.578	0.569	0.555	0.519	0.439	0.478	0.460
Sheep	0.772	0.866	0.828	0.902	1.018	1.033	1.119	1.204	1.432	1.001
SPEED	0.575	0.661	0.595	0.614	0.632	0.750	0.783	0.844	0.835	0.692
TDC	3.413	3.850	4.207	3.416	2.794	2.754	2.667	2.573	2.557	3.088
Tobacco	2.179	2.167	2.019	1.965	1.861	1.928	1.830	1.778	1.472	1.900
Topaz	0.863	0.860	0.860	0.941	0.966	1.050	1.119	1.178	1.182	0.994
UMD_NREMOVAL	1.882	5.221	4.555	4.508	3.634	3.340	3.192	2.654	2.236	3.300
Washington	3.614	2.148	1.726	1.370	1.119	1.119	1.142	1.308	1.334	1.529
Column Geomean	1.219	1.249	1.254	1.263	1.277	1.308	1.383	1.440	1.528	1.321
number > 1	22	19	20	20	22	24	26	26	25	23
P(this many success or more in 33 trials) on null hypothesis	0.040	0.243	0.148	0.148	0.040	0.007	0.0007	0.001	0.002	0.018

Average *PWComb* /Average *EWComb* for % training sets

										4
Daniela	1.051	1.051	1.086	1.099	1.137	1.137	1.815	1.721	1.721	1.279
Fistula	0.262	0.964	0.918	1.039	1.147	1.354	1.362	1.426	1.910	1.037
eBPP	1.859	1.844	2.027	1.778	2.402	2.576	2.727	2.958	4.033	2.384
Eff_Erup	0.965	0.903	0.903	0.796	0.651	0.664	0.892	0.892	0.919	0.835
Erie_Carp	2.920	2.612	2.684	2.567	1.856	1.787	2.047	2.017	2.909	2.339
FCEP	3.843	7.704	7.704	7.908	8.897	8.826	7,485	7,485	5.713	7.091
Florida	0.918	0.446	0.738	0.769	0.822	1.194	1.294	1.658	1.841	0.989
Gerstenberger	1.056	1.183	1.152	1.683	1.651	1.670	1.562	1.501	1.604	1.431
GL_NIS	2.177	1.847	1.672	1.477	1.186	1.134	1.066	1.024	0.809	1.316
Goodheart	1.180	1.291	1.595	1.441	1.366	1.480	1.611	2.136	2.607	1.586
Hemopilia	1.638	2.019	2.019	1.862	2.938	1.534	1.476	1.476	2.808	1.913
IceSheets	1.266	0.861	0.867	0.814	0.850	0.779	0.807	0.880	0.903	0.883
Illinois	0.671	0.697	0.821	0.798	0.867	1.126	1.407	1.800	2.484	1.073
Liander	0.881	0.746	0.488	0.614	0.669	0.780	0.870	0.788	0.575	0.700
Nebraska	0.559	0.340	0.389	0.517	0.692	0.978	1.393	1.733	1.892	0.789
Obesity	3.569	2.383	2.430	2.105	1.842	1.586	1.361	1.267	1.815	1.945
PHAC_T4	1.057	0.833	0.709	0.650	0.853	0.974	1.106	1.195	1.180	0.931
San_Diego	0.273	0.327	0.516	0.578	0.569	0.555	0.519	0.439	0.478	0.460
Sheep	0.772	0.866	0.828	0.902	1.018	1.033	1.119	1.204	1.432	1.001
SPEED				+		-t LO	0/		335	0.692
TDC	Forea	ach p	ercer	nage	spiit	01 50	% Of	more	5 7	3.088
Tobacco	than	ull hv	noth	ocic v	uould	ho r	aiacta	h	472	1.900
Topaz	ine n	unny	pour	esis v	vouiu	bere	ejecie	eu.	L82	0.994
UMD_NREMOVAL	1.882	5.221	4.555	4.508	3.634	3.340	3.192	2.654	2.236	3.300
Washington	3.614	2.148	1.726	1.370	1.119	1.119	1.142	1.308	1.334	1.529
Column Geomean	1 219	1 249	1 259	1 267	1 281	1 320	1 395	1 449	1 541	1 327
number >1	22	19	20	20	22	25	27	26	25	23
P(this many success or										
more in 33 trials) on	0.040	0.243	0.148	0.148	0.040	0.002	0.0002	0.001	0.002	0.018
null hypothesis										

What Explains OoS Validity?

OoSVI improves when BESa and SBESa > 0.05

Conclusions

1. Use OoSVI to study out of sample validity

2. Hypothesis:

H₀: PWgs not better than EW: P(OoSVI >1) = 0.5, studies independent

 $P(H_0 | 33 \text{ studies}) = 0.001.$

 $P(H_0 | all data) = 2.5E-5$

33 post 2006 studies were contracted and overseen by inter alia the Robert Wood Johnson Foundation, US EPA, US NOAA, US DHS, Public Health Agency of Canada, PrioNet (Canada), Sanguin, British Government, European Community, NUMO (Japan), and Bristol University (UK).

Variation of expert weights under one-ata-time seed variable exclusion.

Distribution of number of calibration variables (vertical axis) in Eggstaff et al 2014 and the present study. The horizontal axis is study number.

Isolate the growth of *PWComb* that is not due to decreasing statistical power

PWComb(t,s) = PW combined score on training set *t* of study *s*. $Av_{\#t=k} PWComb(t,s) = average of <math>PWComb(t,s)$ over all training sets of size *k* of study *s*. Similar for *EWComb*.

Fix *s* and fixing training size *t*; *EWSa(t,s)* and *EWInf(t,s)* are nearly independent: Mean and standard deviation over all studies and all training percentage sizes of

 $Av_{\#t=k}EWComb(t,s) - Av_{\#t=k}EWSa(t,s) \times Av_{\#t=k}EWInf(t,s) = (-4.3E-4, 6.5E-4)$. Therefore, for all s

$$Av_{\#t=k} \xrightarrow{PWSA(t,s)} \times \xrightarrow{PWInf(t,s)} = \xrightarrow{Av_{\#t=k} PWComb(t,s)} = \xrightarrow{Av_{\#t=k} PWComb(t,s)} = \xrightarrow{Av_{\#t=k} PWComb(t,s)}$$

Because of independence, RHD differs very little from

 $Av_{\#t=k} PWComb(t,s)$

 $Av_{\#t=k} EWComb(t,s)$