Expert Judgement Informed Sequencing of Reliability Growth Tasks

Kevin Wilson¹, John Quigley¹ and Daniel Henderson²

¹Department of Management Science, University of Strathclyde, UK ²School of Mathematics and Statistics, Newcastle University, UK

28th August 2015

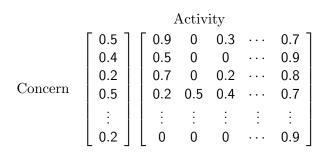
<u>Scene</u> setting

Reliability Enhancement Methodology and Modelling (REMM) project

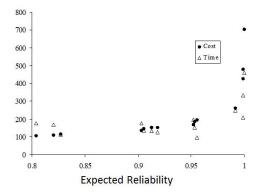
smiths

Using reliability tools to ensure greater product reliability, reduce costs of rework and spares provisioning and provide greater customer confidence and satisfaction.

- University of Strathclyde: Lesley Walls and John Quigley.
- University of Loughborough.
- Several industrial partners.
- RAF Reliability Group.
- UK Department of Trade and Insdustry



- During hardware product development, engineers will regularly meet to discuss potential engineering concerns.
- An efficacy matrix can be created detailing:
 - 1. The probability of engineering concerns being a fault.
 - 2. The probability of each of the possible tasks revealing the fault.



- Cost can be optimised to achieve certain levels of reliability.
- Time is not independent of cost but is not optimised extra cost can reduce time.
- Steep finish demonstrates cost and time to achieve very high reliability.

- During product development designs are analysed by performing reliability tasks, identifying design weaknesses.
- These weaknesses are then designed out and the system reliability improves.
- Examples include fault tree analysis, failure mode and effects analysis, accelerated life testing, etc.
- Such tasks can be resource intensive and expensive.
- Outcomes of tasks not mutually exclusive: multiple tasks expose the same weakness (some weaknesses not exposed).
- Target: a method to identify the optimal sequence of reliability tasks for a product/system.

A model of system reliability

▶ Let i = 1,..., I be engineering concerns and j = 1,..., J be possible reliability tasks. Then

$$X_i = egin{cases} 1, & ext{if concern } i ext{ is realised}, \ 0, & ext{otherwise}, \end{cases}$$

- and $\Pr(X_i = 1) = \lambda_i$, $\Pr(X_i = 0) = 1 \lambda_i$.
- Let $p_{i,j}$: probability task *j* realises fault *i* if it exists.
- We can elicit λ_i , $p_{i,j}$ from engineers inside the organisation.
- If faults are independent then $R(t) = \prod_{i=1}^{l} R_i(t)^{X_i}$.
- Having performed each task $\theta_j = 1$ or not $\theta_j = 0$:

$$E_{D} \left\{ E_{X|D} \left[R(t) \right] \right\} = \prod_{i=1}^{I} \left[1 - (1 - R_{i}(t)) \lambda_{i} \prod_{j=1}^{J} (1 - p_{i,j})^{\theta_{j}} \right]$$

- We are interested in quantities of the form $Pr(R(t) \ge R_0) = \alpha$, for some α close to one.
- First transform

$$\eta(t) = \log\left[R(t)\right],$$

and assume $\eta(t) \sim N(m(t), v(t))$.

- We are interested in $Pr(R(t) \ge R_0) = Pr(\eta(t) \ge \log R_0)$.
- Specify exactly in terms of m(t), v(t) as

$$\begin{split} m(t) &= \mathrm{E}_d \left\{ \mathrm{E}_{X|d} \left[\eta(t) \right] \right\},\\ v(t) &= \mathrm{E}_d \left\{ \mathrm{E}_{X|d} \left[\eta(t)^2 \right] \right\} - \mathrm{E}_d \left\{ \mathrm{E}_{X|d} \left[\eta(t) \right] \right\}^2 \end{split}$$

where $d_i = 1$ if fault *i* found.

The moments are computationally expensive to calculate.

Sequencing Reliability Tasks

Rare event approximation:

$$-\log [R(t)] = \sum_{i=1}^{I} (1-R_i(t))\lambda_i - \sum_{i=1}^{I} (1-R_i(t))\lambda_i \sum_{j=1}^{J} \theta_j (1-\alpha_{i,j}),$$

• where $\alpha_{i,j}$ is 1 if task j finds fault i given that fault i exists.

$$\begin{split} m(t) &= -\left[\sum_{i=1}^{I}(1-R_i(t))\lambda_i - \sum_{i=1}^{I}(1-R_i(t))\lambda_i\sum_{j=1}^{J}\theta_j(1-p_{i,j})\right],\\ v(t) &= \sum_{i=1}^{I}\left[(1-R_i(t))\lambda_i\right]^2\sum_{j=1}^{J}\theta_j(1-p_{i,j})p_{i,j}. \end{split}$$

Number of computations for a sequence of length J;

- Exact method: $N_1 = 2^{2I+1} \times^J P_J$.
- Rare event approximation: $N_2 = 2IJ \times^J P_J$.

▶ If I = 5, J = 5 then $N_1 = 245$, 760 and $N_2 = 6000$ and if I = 15, J = 14 then $N_1 = 1.87 \times 10^{20}$ and $N_2 = 3.66 \times 10^{13}$.

Solution to Decision Problem

- Suppose Y_j is the cost and χ_j is the time on test of task j.
- Optimal sequence of tasks:

$$\max_{s\in S} \left[\mathrm{E}_d \left\{ \mathrm{E}_{X|d} \left[U(Y, \chi) \right] \right\} \right],$$

for total cost Y and time on test χ , where $U(Y, \chi)$ is the utility function.

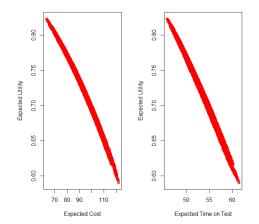
- Y, χ depend on when we reach our target.
- If cost and time on test are utility independent then:

$$U(Y,\chi) = p_1 U(Y) + p_2 U(\chi) + p_3 U(Y) U(\chi).$$

Assuming the decision maker is risk averse:

$$U(Y) = 1 - (Y/Y_0)^2, U(\chi) = 1 - (\chi/\chi_0)^2.$$

- Suppose that engineers identify 15 possible design flaws in a product and there are 9 possible tasks to identify these flaws.
- This means that in all there are 362,880 possible sequences of the tasks which could be carried out.
- Each task has a cost of between 0 and 50 units and duration of 0 to 20 units.
- The target reliability is 0.8, the maximum time on test is 150 units and the maximum total cost is 258 units.
- Assume a constant failure rate for each fault type (can relax this).
- ▶ λ_i between 0 and 0.5, 54% of the p_{i,j} are equal to 0 and the rest are between 0 and 0.5 and μ_i is 0.02.



Task	4	2	8	1	9	5	7	6	3
Cost	17	52	63	63	109	114	135	138	165
Time	9								
Probability	0.0002	0.10	0.46	0.82	0.97	0.99	1.00	1.00	1.00

Surrogate Function

► We want to approximate expected utility U(·) with a surrogate f(·) such that, for sequences z_k,

 $f(z_k) > f(z_{k'})$ if $U(z_k) > U(z_{k'})$.

- We would like $f(\cdot)$ to be faster to evaluate than $U(\cdot)$.
- Suppose that for task j we have γ_j which is proportional to the probability that task j is scheduled first.
- ► Then (Plackett-Luce), the probability of a sequence z = (z₁,..., z_J) is

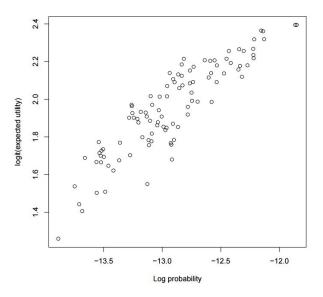
$$\Pr(z \mid \gamma) = \prod_{j=1}^{J} \frac{\gamma_{z_j}}{\sum_{m=j}^{J} \gamma_{z_m}}$$

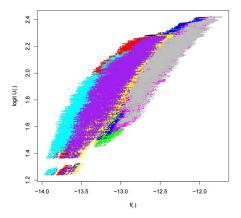
• We want $\gamma = (\gamma_1, \dots, \gamma_J)$ to maximise $Corr(\beta, I^{\gamma})$, where

$$\beta = \operatorname{logit}(U(z)), I_k^{\gamma} = \operatorname{log}(\operatorname{Pr}(z_k \mid \gamma)).$$

• We choose $f(\cdot)$ to be $\log \Pr(z_J, \ldots, z_1 \mid \gamma)$.

Returning to the example





- ► In this case, the sequence with the highest f(·) does not have the highest expected utility.
- ► The sequence with the highest expected utility is the 9th highest in f(·).

Summary

- We have presented a model for system reliability which was developed to mirror the engineering process.
- To sequence reliability tasks, we can use expected utility, but the resulting solution becomes computationally intractable.
- To overcome this, we can find an approximate optimal allocation using the rare event approximation and surrogate functions.
- The utility functions can be used to express risk aversion in decision makers.
- Future work is to investigate the properties of the surrogate function.

